
A Framework for Component Based Model Acquisition and Presentation
Using Java3D

Peter Blanchebarbe Stephan Diehl

University of Saarland
FR Informatik

Postfach 151150
66041 Saarbrücken, Germany

{blanchebarbe,diehl}@cs.uni-sb.de

Abstract

Manufacturers rarely provide information about their prod-
ucts as CAD data, not to mention even 3D animations.
Thus, it is desirable for example for the products of an online
store to have the possibility to describe and record products
in a simple way. This paper deals with visualizing product
components by means of Java and Java3D and recording this
data in an XML based data format. With the help of this
data format 3D-objects can be reconstructed and reused.
We explain how a product configuration which may later be
shown as an animation can be constructed. Here, the cen-
tral issues are the representation of the product components
in the scenegraph and connecting them according to their
physical relation in reality.

1 Introduction

A closer look at current statistics reveals that the accep-
tance and the benefit of the internet as a shopping facility is
constantly increasing. While in autumn 1996 only one third
of the internet users believed that the world wide web was
suitable or very suitable for shopping, in autumn 1999 that
number increased to 87 percent. There are many prognoses
about growth rates in the area of e-commerce. These often
differ to a very high degree. Yet analysts and pollsters are
certain that the turnover will rise significantly. The most
successful companies like Amazon and CDnow offer media
based products which are of contextfree nature. For exam-
ple, not the outward appearance of a book, but its content
is important. Yet there are many products, whose looks are
more important, e.g. furniture. Furthermore, many prod-
ucts which are delivered as a kit are sold via the internet, i.e.
hardare components for computers and furniture. In such a
case it would be convenient to show the customer how that
product is composed or how it can be integrated into an
existing system. To this end a program named GenAu-3D
(Generic Authoring Environment) was developed. With the
help of this program it is possible to visualize product com-
ponents approximately. These product components can be
put together to create an animation. GenAu-3D includes
three tools:

• Meta-Authoring Tool

• Generic Authoring Tool

• Configuration Tool

These tools are explained in Section 2. Furthermore, in Sec-
tion 3 the 3D-ObjAc (3D-Object Acquisition) object model,

in which the components are recorded, will be presented. It
is written as an XML file. In order to get an animation you
have to know which product components are interconnected.
A straightforward approach would be to assign an absolute
position to each of the components before the start of the
animation. However, this is very tedious. Instead, in Section
4 we present a possibility to connect the components dynam-
ically by means of contact points. To this end we will take
a closer look at the structure that manages the components
in the scenegraph.

Figure 1: Mainboard with cards

2 Object Acquisition

Definitions:

• Primitive: An Object that represents one of the fol-
lowing forms: cylinder, box, sphere, cone.

• Part of a component: An object built from primi-
tives, which on its own does not fulfil a useful function,
e.g. a plate of a mainboard.

• Component: An object built from parts of compo-
nents, which is a constituent of a product, e.g. main-
board with sockets and slots.

• Product: The totality of all components, e.g. a com-
puter.



Figure 2: Creating an animation

The idea of object acquisition with GenAu-3D is to get dif-
ferent Authoring Tools for each domain. Within a domain
certain products differ solely with respect to their colour
or texture or are partly built from the same components.
A Meta-Authoring Tool is used for predefining components
or parts of components. From these predefined objects an
Authoring Tool is created which can be used later to con-
struct the final components. All components are identified
unambiguously by the manufacturer and by their name. Fur-
thermore additional infomation can be acquired, which can
be presented later as part of the animation. In both tools
components are approximated by primitive geometries. The
following properties can be changed:

• Cone: height, radius, colour, texture

• Box: height, width, depth, colour, texture

• Cylinder: height, radius, colour, texture

• Sphere: radius, colour, texture

In order to assemble the components in the animation con-
tact points have to be defined in such a way that the posi-
tion of one component to another is defined unambiguously.
These contact points are described by position and rotation
information. How to connect a component to another by
means of these points is described in Section 4.5. After the
components have been created an animation can be pro-
duced. The contact points, which have to match by name,
provide a basis for this animation. Contact points which
can be used in several animations are defined in the Au-
thoring Tool, whereas contact points which are used only in
one specific animation can be placed in the Configuration
Tool. Here, also the order in which the components appear
in the animation is defined. In case several components of
the same type are on the same rank, they can be inserted

one after another or in parallel. In addition, the duration of
positioning a component, can be defined. As it is often the
case that products are not built in one piece but in segments
we can also define intermediate steps. All components that
have been produced earlier in the Authoring Tool for that
domain can be selected. Once the configuration is finished a

Figure 3: Computer configuration

jar file is created that contains all component data and java
classes necessary for the process of animation. This jar-file
can either be started as an application or as an applet. In
both cases an existing installation of a Java2 and Java3D1.2
runtime environment is required.

3 The Object Model

To acquire objects, a data format has been defined to de-
scribe all properties. It is based on XML and specified by
a DTD. Not only shapes and colours should be captured by
this object model. There is more information that has to be
acquired i.e.: descriptions, position data, rotation data etc.
In this section we will look at an example of how this data
is stored.
The excerpt listed below is produced by the Configuration
Tool, but the other tools (Meta-Authoring Tool, Authoring
Tool) generate similar output. In the next chapters the main
features of this configuration file are discussed.

3.1 Object Information

In the first part of the file information about the object(s),
included in the rest of the file, is given. A component needs
a name and a manufacturer to identify it unambiguously.
They are used in the Configuration Tool and the Animation
Tool, which is created from the Configuration Tool.
Furthermore, each component belongs to a domain specific
Authoring Tool it is created from. An Authoring Tool con-
tains groups to structure the domain it was created for. In
the example in Figure 4 we would distinguish between the
groups board, card, floppydrive and other hardware com-
ponents a computer is assembled from. When using this
component for an animation it is necessary to know when
this component has to be inserted. This is done by the rank-
attribute. Furthermore it is possible to insert more than one
component of the same type at this point of the animation,



COMPONENTNAME="P5A"
MANUFACTURER="Asus"
AUTHORINGTOOLNAME="Computer"
COMPONENTGROUP="Board"
RANK="4"
NUMBER="2"
TIME="1.0"
INSERTIONTYPE="parallel"
DESCRIPTIONAUTHOR="Peter B."
DESCRIPTIONDATE="18.09.00"
DESCRIPTIONURL="computer/board/asus/spx97v.dsc">

Figure 4: Object information section of an XML file

e.g.: some screws. When animating the screws you can set
the time in seconds they need to be inserted at their posi-
tions. If they are to be inserted in a complex structure it
might be practical to enlarge the duration of an animion.
This makes it easier to follow the animation. If there are
more than one component at one rank in the Animation
Tool they can be inserted simultaneously (parallel) or one
after another (serial). After all, a component can be de-
scribed. Therefore the name of the author who has written
the description and the time the file at the specified URL
has been created can be collected. This description is shown
later in the Animation Tool.

3.2 Steps

Steps are only part of the description of an animation and
are created in the Configuration Tool. They are used to

<STEP
FOLLOWINGSTEPTYPE="part finished"
FOLLOWINGSTEPNAME="STEP2">

</STEP>

Figure 5: Step section of an XML file

create intermediate steps. In the example in Figure 5, part
finished means that a section in the animation is over and
a new part of the product will be created.
As an alternative the value insert part would indicate that
the part of the product, which as been removed in STEP2,
will be inserted. This will give you the possibility to create
some parts of the product and to fit them together later to
the whole product.

3.3 Contact Points

Contact points are generated by the Authoring Tool and
Configuration Tool and are needed for the animation. A
component can contain more than one contact point, be-
cause a component can have relations to several other com-
ponents. Consider a processor for example. It needs one
contact point to be connected to the socket of the main-
board and another contact point for the fan, which is on top
of the processor. A contact point for a socket is defined in
Figure 6.

<CONTACTOBJECT
CONTACTNAME="socket7"
CONTACTTYPE="female"
UNIT="mm"
FACTOR="1.0"
XTRANSLATION="0.0"
YTRANSLATION="-0.060999997"
ZTRANSLATION="0.0"
XROTATION="0.0"
YROTATION="0.0"
ZROTATION="0.0">

</CONTACTOBJECT>

Figure 6: Contact point section of an XML file

If the following condition is satisfied, two components can
be interconnected:

CONTACTNAME(A)== CONTACTNAME(B) &
CONTACTTYPE(A) 6= CONTACTTYPE(B) &
CONTACT(A)==free & CONTACT(B)==free

The contact type is either male or female.

Because products differ in their size contact points have to
be represented in different sizes too. This is needed for bet-
ter handling while creating them. A contact point is rep-
resented as an graphical object in the tools, but not in the
final animations. It can be scaled by some fixed factors.
UNIT describes the measure (mm, cm, m). Furthermore a
contact point needs position data and rotation data. This
data is responsible of the position a component has in rela-
tion to another component. Rotation and translation are to
be interpreted relative to the origin of the local coordinate
system the component is defined in.

<PRIMITIVEOBJECT
DESCRIPTIONAUTHOR="Peter B."
DESCRIPTIONDATE="18.09.00"
DESCRIPTIONURL="computer/board/asus

/descriptions/po.dsc"
SHAPETYPE="Box"
UNIT="cm"
X="20.0"
Y="29.0"
Z="0.1"
FRONTTEXTURE="computer/board/asus/textures/a1.jpg"
BACKTEXTURE="computer/board/asus/textures/back.jpg"
TOPTEXTURE=""
BOTTOMTEXTURE=""
LEFTTEXTURE=""
RIGHTTEXTURE=""
XTRANSLATION="0.0"
YTRANSLATION="0.0"
ZTRANSLATION="0.0"
XROTATION="0.0"
YROTATION="0.0"
ZROTATION="0.0"
RED="0.2"
GREEN="0.0"
BLUE="0.8">

</PRIMITIVEOBJECT>

Figure 7: Primitive object section of an XML file



3.4 Primitive Objects

Primitive objects are the smallest visual entities, which are
generated by the Meta-Authoring Tool and Authoring Tool.
Every primitive object can be described as explained in Sec-
tion 3.1. It consists of one of the following types: box, cone,
sphere, cylinder. Dependent on this type the object for the
scenegraph will be created. Because there is the possibility
to create products of a wide range and different domains,
there are different measures (mm,cm,m). Usually you define
the size of a motherboard in centimeter and not in meter,
which is the default unit in Java3D. The measure is used to
get the factor the geometric data will scaled by. In the case
of Figure 7: 2.0 ∗ 0.01, 1.0 ∗ 0.01, 1.0 ∗ 0.01.
The information about the objects colour is stored by us-
ing the RGB colour model. To describe the appearance of
a primitive object it is not only possible to use colours, fur-
thermore you can choose pictures, which are used as tex-
tures for this object. These pictures can be found at the
URLs specified in Figure 3.1. If a primitive object is part of
a compound object it must have a description of its position
and its rotation in this compound object. The rotation data
is described in radian. If the primitive object is part of a
compound object the position and rotation are relative to
the origin of the local coordinate system of the compound
object. Otherwise they are relative to the origin of the world
coordinate system.

3.5 Compound Objects

A compound object is assembled of primitive objects. Every

<COMPOUNDOBJECT
COMPOUNDEDOBJECTNAME="Papst Duron"
COMPOUNDEDOBJECTGROUP="fan"
DESCRIPTIONAUTHOR="Peter B."
DESCRIPTIONDATE="18.09.00"
DESCRIPTIONURL="computer/fan/papst/Papst Duron.dsc"
XTRANSLATION="2.0"
YTRANSLATION="0.0"
ZTRANSLATION="1.5"
XROTATION="0.876"
YROTATION="0.0"
ZROTATION="0.21">
<PRIMITIVEOBJECTS>

.

.

.
</PRIMITIVEOBJECTS>

</COMPOUNDOBJECT>

Figure 8: Compound object section of an XML file

primitive object is constructed as shown in Section 3.4. The
compound object has a name and a group attribute to iden-
tify it. This is for structuring the predefined objects, which
can be used in the domain specific Authoring Tool. Further-
more, it contains the attributes to position and rotate the
compound object. If the compound object is part of a com-
ponent this information refers to the origin of the compo-
nents local coordinate system. If it is used in the Authoring
Tool, the data refers to the origin of the world coordinate
system.

Only files which are valid according to the DTD can be
parsed. The parser will produce data objects, which contain
all information about the components. This information is

needed to create the 3D-objects, that are added to the scene-
graph.

4 Scenegraph Management

In this section we look at the organisation of the data in the
scenegraph. The scenegraph is created from the following
units:

• Primitive object

• Compound object

• Component

Each unit is a subgraph itself. It provides different manip-
ulation capabilities. The most important type mentioned
above is the component. It combines primitive and com-
pound objects. Additionally, it contains the contact points,
which are responsible for the connection of the components
as they are connected in reality. This means: If component
A is connected to component B in reality then A is also con-
nected to B in the scenegraph. This is very important, when
several components are moved or rotated in the animation or
should be moved or rotated by the user or another program.
If there are cyclic relations in reality, one connection in the
scenegraph can not be established, because scenegraphs in
Java3D have to be acyclic. The remaining connections are
sufficient, as will become apparent in Section 4.6.

4.1 Primitive Objects

Primitive objects appear to the user as cones, boxes, cylin-
ders or spheres. These objects own certain properties, which
can be changed by the user.

Figure 9: Node representation of a primitive object

Figure 9 shows the scenegraph structure for primitive ob-
jects. Every primitive object can be added to the scenegraph
or removed from it at any time. Thus, the first node is a



BranchGroup-Node, which can be detached from its parent
node or may be added to it. The RotationTG-node below
serves to rotate and to position this object. We provide
an API to create and manipulate this node. The graphi-
cal object starts with the ObjectTG-node. It consists of the
primitive itself and a selection box, which allow the user to
highlight this primitive object. Primitive objects provide the
following methods:

• The colour of this object can be changed.

• The spatial extension of this object can be changed.

• If there is a light source, the object can be illuminated.

• It is possible to texture the object. Additionally the
texture can be enabled or disabled. This is important
for positioning the contact points.

• The object can be made transparent. This will also
help the user to position the contact points for this
component.

4.2 Compound Objects

A compound object is composed of several primitive objects.
In the scenegraph it will be treated as a single object. This
means, that you always remove or add the whole object,
not single nodes. They own a more restricted set of prop-
erties than the primitive objects. The rotation data and
the position data are manipulated the same way they were
manipulated in the primitve objects.

Figure 10: Node representation of a compound object

The compound objects also start with a Branchgroup-
node as root and a RotationTG-node. The properties (light,
texture, transparency, selectionbox) are propagated to the
primitive objects. That means, the java-class which imple-
ments the compound objects contains a structure to admin-
istrate its primitive objects. This structure allows changing
the properties of the primitive objects.

4.3 Contact Points

Contact points allow connecting several components accord-
ing to their connections in reality. Consider the following
example:
A table consists of a table top and four table-legs. In the

Figure 11: Flat representation, less intuitive

scenegraph this can be represented by connecting the visual
objects directly to the root node of this graph. The table
top is positioned at the origin while the table-legs are po-
sitioned relative to the table top. So the table-legs are not
connected to the table top, although they are connected to
it in reality. This will make no difference for the viewer. But
what will happen when moving the table top? In reality you
will move the whole table. In this scenegraph this means
to set the values of the TransformGroup-node the table top
is attached to. Now it will make a difference to the viewer,
because the table-legs stay on their old position, but not the
table top. To achieve a motion for the whole table you have
to set the values for the TransformGroup-nodes of the table-
legs as well, considering the motion of the table top.
Now one can say: ”Insert a new TransformGroup-node,
which has the legs and the top as its children and set the
value of this node”. This will work in the example men-
tioned above. But what will happen when moving the table
with its leg to a specified point in reality? In the scene-
graph you have to add the position value of the leg to the
target position value and assign this newly computed value
to the TransformGroup-node of the table. This is really not
intuitive. And it becomes even worse when manipulating
components of more complex products by additionally ro-
tating them.
So it would be practical to have the possibility to map the

physical connections in reality to the scenegraph. Contact

Figure 12: Contact point-representation, more intuitive



Figure 13: Node representation of a contact point

points will help us to achieve this.
A contact point is built up in an easy way. It owns an
ObjectBG-node, a ConnectTG-node and a ConnectBG-node.
The ObjectBG-node is connected to the component the
contact point is defined for. The ConnectBG-node is re-
sponsible for connections with other components. In that
case the other component will be connected as child to
the ConnectBG-node. Between the ObjectBG-node and the
ConnectBG-node the ConnectTG-node is located. It con-
tains the rotation and the position data of this contact point.
Furthermore the contact point must have a description for its
identification. Based on this identification it will be decided
which components can be put together. If a contact point
is in use it is declared occupied. The exact procedure how a
connection is processed in the scenegraph will be described
in Section 4.5.

4.4 Components

In addition to nodes, which represent the visual parts, com-
ponents also contain nodes which are needed to control the
animation. That means, that interpolators will manipulate
different nodes of a component. Like the object types men-
tioned above, the components start with a BranchGroup-
node. The nodes between the MotionTG-node and the
ScaleTG-node are as follows.

• MotionTG: This node contains the position of this
component. The position interpolator uses this node
to set the component to the right place.

• RotationTG: Analogous to the MotionTG-node.

• OffsetTG: This node is important for connecting com-
ponents. It will be explained in Section 4.5.

• ScaleTG: Because the components will appear scaled
in the upper area of the animation window, this node
is used to scale them to their right size. Furthermore
it is used by the scale interpolator to set them to their
original size while animating them.

The primitive objects and the compound objects as well
as the contact points are children of the ObjectTG-node. A
component owns three properties:

• Lighting

• Tranparency

• Selection

Figure 14: Node representation of a component

4.5 Connecting Components

Two components A and B are connected if the following
holds:

CONTACTNAME(A)= CONTACTNAME(B) &
CONTACTTYPE(A) 6= CONTACTTYPE(B) &

CONTACT(A)==free & CONTACT(B)==free
and CONTACTTYPE is either male or female.

Both contact points involved in this process will be de-
clared occupied and will not be available for later connec-
tions. When unfixing B from A the contact points will be
declared free.
Alternatively, the contact point of B can be unfixed and B
becomes child of its own contact point. This gives the possi-
bility to connect the two contact points of A and B. Maybe

Figure 15: Matching between two components



Figure 16: Connection of two components

this way is more esthetic than the other, but there is no prac-
tical advantage. Figure 15 and 16 show two components A,
B. These are compressed representations of Figure 14. Only
those nodes which are involved in the connection process and
the state of the contact points are shown.
First the contact points of both components are compared.
If there are two contact points which fulfil the condition
above, there is a match and these components can be con-
nected (Figure 15). But you cannot connect them by making
the matched contact point of B a child of the contact point
of A. This will produce a MultipleParentException because
the contact point of B is already connected to B itself. This
could possibly lead to an cyclic scenegraph, which is not al-
lowed. So we have to find another solution. To connect the
components, the root-node of B (BG-node) is connected to
(is child of) the contact point of A. The rotation information,
which is contained in the ConnectTG-node of B’s contact
point will be stored negated in the RotationTG-node as well
as the translation information is stored negated in OffsetTG-
node. This will set the contact point of B to the origin of
the local coordinate system with x-,y- and z-rotation equal
to zero. Now the component has the right place and the
right rotation and can become a child of A.

4.6 Connecting Parts of Products

The way of connecting components mentioned above is the
basis of connecting parts of products. To repeat the meaning
of ”parts of products”: they are built up of several compo-
nents.

The problem of connecting them is comparable with the
table-problem depicted in Section 4.3. The solution of this
problem is based on contact points. These points make it
possible to exchange every component, which is a child of
another component, with its parent. But what is the ad-
vantage? The advantage is that every component can be
made root of a subgraph. And that will allow us to move or
to rotate every component without changing its appearance
while at the same time maintaining all connections which
exist in reality.

Figure 17: Matching

Figure 18: Rearrangement



Figure 19: Component connection

The process can be seen in Figures 17, 18, 19 and performs
the following four steps.

• Matching: Find out the contact points that match
and the components they belong to.

• Path detection: This will retrieve a path from the
part of the product, which contains the component that
should be a new child of a component in the other part
of the product(part B). This path contains all com-
ponents from the one that is matching to the root of
this part. The path ist stored in an array (pathCompo-
nents[]), whose first element is the root-node.

• Rearrangement: The scenegraph of part A is
rearranged with the matching component as its root.

Description of this process:
.
.
i=0;
while(i+1 < pathComponents.length) {

/*get the parent, that will
be a child in the newly
arranged graph */
newChild = pathComponents[i];

/*vice versa*/
newParent = pathComponents[i+1];

/*detach the old child
from its parent*/
newParent.detach();

/*append the old parent to
its old child, see Figure 16*/
newParent.addChild(newChild);
i++;

}
.
.

• Connection: The new root-node will be appended to
the component of part B.

5 The Animation

The object types and the way the scenegraph can be modi-
fied allow us to build an animation which will demonstrate
how a product is built up of its components.

Figure 20: Animation with intermediate step

The upper part of the rendering window contains the com-
ponents in the order they are needed for the animation. If
there are intermediate steps, the corresponding parts of the
product are shown in the lower part of this window and can
be reused if they are needed in the sequel of the animation.
Steps are also shown in the control panel. They are marked



Figure 21: Animation of interconnecting a processor with a socket

with blue coloured list entries. The interpolators needed for
the animation of every component are bound dynamically
to these components. A short description of the elements of
the control panel:

• List: The list in the upper part of the control panel
shows the components in the order they are inserted.
If all components of one rank are used, this entry is
coloured red. If there are more than one component at
one rank the number in the entry shows the remaining
components.

• Light: The light button switches the light on or off.

• Product description: This button will open a text
area with the description of the whole product.

• Component description: This button will open a
text area with the description of the components as
they are inserted. Another possibility is to click on the
components to show the information for this compo-
nent.

• Front-view: This button will always position the work
place in front of the viewer.

• Background color: This button gives the possibility
to change the colour of the work space.

• Animation control buttons: These buttons control
the direction and the mode of the animation (controlled
by the user or automatically)

• Slider: With the help of the slider the user can control
the animation speed.

6 Conclusion and future work

In this paper we discussed how components can be built up
from primitive objects and how they are supplied with con-
tact points. These contact points are responsible for com-
posing single components to form the whole product. This
is done by declaring components as single units in the scene-
graph and by using contact points to reorder components
without changing the appearance and while at the same time
maintainig the connections, which exist in reality. All com-
ponents are described via an XML based data format. One
possibilty to use this object model described by XML-files is
the construction of animations. But it would also be possi-
ble to develop other applications in the area of e-commerce.

Improvements are always possible. So the next step is to
allow the user of GenAu-3D to define free formed objects or
to use objects, which already exist.
Applications and applets can be found on the internet at:
http://www.cs.uni-sb.de/RW/users/pblanche
/genau3d/genau3d.html

References

[1] Dennis J. Bouvier, Java 3D API Tutorial Updated, Sun
Microsystems, 1999

[2] Mathias Nousch, Bernhard Jung, CAD on the World
Wide Web: Virtual Assembly of Furniture with
BEAVER. VRML 99, Fourth Symposium on the Vir-
tual Reality Modeling Language, Paderborn, Germany,
1999, p.113-119

[3] Erik Wilde, WWW-Grundlagen und Tech-
nologie, Extensible Markup Language (XML).
http://dret.net/lectures/www-ss00/xml.pdf, ETH
Zürich, 2000

[4] Reenschhaus: http://www.business3d.de/reensch/
reensch1024.html



Figure 21: Animation of interconnecting a processor with a socket

A Framework for Component Based Model Acquisition and Presentation Using Java3D

Peter Blanchebarbe Stephan Diehl


