
ChartFlight – From Spreadsheets to Computer-Animated Data Flights

Rainer Lutz
Computer Science Department
University of Trier, Germany

lutzr@uni-trier.de

Stephan Diehl
Computer Science Department
University of Trier, Germany

diehl@uni-trier.de

Abstract

In business as well as science a clear and professional presenta-
tion of quantitative information is often required and helps to ef-
ficiently communicate new insights. The predominant approach is
to integrate charts into slide shows created with standard presenta-
tion programs. In this paper, we introduce the chart flight metaphor
for visualizing spatially distributed statistical data as a computer-
generated three-dimensional camera flight over a map with ani-
mated charts. Our web application leverages the Blender 3D mod-
eling and animation tool to allow end users to submit their data sets,
and easily generate chart flight videos without profound knowl-
edge of computer graphics methods and systems. The generated
videos can be included into slide show presentations, put on web
pages or shared via file hosting sites, and even displayed on low-
performance hardware devices like mobile phones or netbooks.

CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Animations;

Keywords: animation, web, video

1 Introduction

Without visualization complicated data cannot speak for them-
selves. Newspapers or news programs on TV mostly show quanti-
tative information like demographic surveys, stock market indices,
or sales numbers in form of charts.

In business and science a clear and professional presentation of
quantitative information is often required and helps to efficiently
communicate new insights. The predominant approach is to inte-
grate charts into slide shows created with presentation programs
like Microsoft Powerpoint or OpenOffice.org Impress.

Statistical charts created with such office tools usually do not look
as professional and are not animated as those shown on news shows
on TV. While it is possible for the end user to make good charts, she
must either spend a lot design effort or spend both a lot of money
and time for professional tools and on learning how to use them.

In this paper, we introduce a totally different approach for present-
ing charts utilizing the idea of generated three-dimensional camera
flights.

Imagine that you want to present election results of different parts
of your country, e.g. for federal states, provinces, etc. In general,
if you do not have access to professional tools, the straightforward
approach is to create a sequence of images or slides, each show-
ing a chart of the results for one of the states or provinces. During

the presentation one slide is shown after the other possibly using an
animated transition like flipping or blending between subsequent
slides. In contrast, our approach creates a three-dimensional, ani-
mated video, which may be used for presentations or shared on the
web, e.g., via video hosting websites like YouTube.

For instance, the election results would be shown as a kind of 3D
flight, henceforth called a chart flight, over the map of your country
with intermediate stops at each federal state. At each stop the local
results would be shown as a chart right in place. Such an approach
has the advantage of depicting graphically the location the data is
related to, rather than just showing the location as plain text.

Thus, our work makes the following contributions:

• A generic metaphor for animated, three-dimensional presen-
tations of spatially distributed statistical data.

• An approach for generating these presentations using the open
source 3D computer animation software Blender [Blender
2009].

• An end-user friendly frontend for making our approach acces-
sible on the web.

• Generation of high quality 3D content without requiring high-
end computer graphics hardware on the client-side, which
makes it accessible to mobile phones, PDA’s, or netbooks.

Moreover, in the conclusions we briefly explain how you can adapt
our approach to leverage other visualization techniques.

2 End-user Visualization

There are many other areas where spatially distributed statistical
data occur, for instance, economical data of different countries,
sales number at different branches, cancer incidence statistics re-
lated to different parts of the body, weather data at different cities,
etc.

As this kind of statistical data is so widespread, the question arises
how we can enable end users to easily produce chart flight videos
from their own data sets.

Obviously, the typical end user lacks the skills to create three-
dimensional animations or animations at all using 3D content cre-
ation suites (such as Blender). Therefore, our goal was to find a
user-friendly approach requiring no computer graphics background
on the part of the user. Typically, 3D content creation suites like
Blender provide a large number of different features through their
graphical user interfaces. But the question is how to decide which
options should be available for the end user. Should it be possible
to specify the amount of specularity of a chart or the letter spacing
of text? Questions like these are crucial when it comes to usability.
Too many options could discourage a user to work with this form
of data visualization and on the other hand if we provide too few
settings our system will not be flexible enough for different types
of data.



Figure 1: Selection of different real-world examples. Results of German parliamentary elections for its federal states (a), touches of the ball
for players of a soccer team (b), migration in Germany (c), cancer incidence statistics for the most common cancer types (d and e).

2.1 The ChartFlight metaphor

Returning to our election results example, to create a chart flight
video the user has to provide at least three different inputs: A map
of the respective country, the locations, which in our case were de-
fined by a point close to the center of each federal state, and the
data set, which contains the election results for each location. Note,
that none of these inputs require computer graphics knowledge on
part of the user.

As another example, consider cancer incidence statistics. Imagine
you want to provide information about common cancer types and at
same time show where these cancer types are normally located in
the human body. Based on our approach we would suggest either
to draw a sketch of the human body or to try to find a usable image
on the internet, provide the data set with data for each cancer type,
and define the locations where to display the information.

While the above examples greatly differ in the contents of the im-
ages and the interpretation of the data sets, the generated videos
follow the same scheme.

2.2 The ChartFlight data model

Based on observations like the one discussed above, we developed
a generic model for chart flight visualizations. Basically, a chart
flight is a generated 3D camera movement along a given path that
needs three different inputs:

• the ground plane to display a given image

• an ordered set of locations to define where charts will be dis-
played and to generate the camera movement

• a data set that contains a separate table for every chart location

The chart flight model can be applied to many real world examples.
For instance, we visualized freight traffic and passenger transport
statistics of the European Union based on data sets from [Euro-
pean Commission 2009]. Besides election results and cancer inci-
dence statistics we also generated chart flights presenting German
migration statistics in 2007 [Statistisches Bundesamt 2009]. Fig-
ure 1 shows an overview of different real world examples.

2.3 The ChartFlight web application

Our first stable prototype implementing the chart flight metaphor is
a web application called ChartFlight. In general, a web application
has the advantage that users do not have to download and install a
separate application or connect to a rendering server directly, which
could also imply problems with firewall settings.

Basically, ChartFlight consists of three separate parts: a web client,
a web server, and one or more rendering servers in the background.

The web client provides different webforms to create a settings file,
which is then transferred through the web server to the rendering
engine to generate a chart flight video.

In our current prototype implementation web server and rendering
server are located on the same computer, but, in general, it is pos-
sible to distribute them and provide more than one rendering server
for ChartFlight.

2.4 Videos for end users

Data visualizations for end users rendered as video files have sev-
eral advantages as compared to real-time applications. First of all
such files can be easily embedded in presentation slides and web-
sites or uploaded to video file hosting services. Even if users want
to play a generated video on a local machine they may either use a
pre-installed video player or decide to install their favorite player,
which they are familiar with. That means they do not have to learn
how to interact with a real-time visualization. Finally, for playing a
video less resources are required than for running a real-time pre-
sentation, which especially concerns laptops and low-performance
hardware devices like mobile phones or netbooks because there it
is often not that common to have access to powerful graphics hard-
ware.

Our idea to present a video generated with ChartFlight is close to
presentations shown at [Rosling et al. 2004]. The lecturer plays the
video or just a part of it and while the audience is watching the
animation she gives them additional information about the shown
statistics. The video can be paused if a description of more spe-
cific facts is required. This scenario maintains our choice to prefer
rendering video files over creating real-time applications because it
is easier to integrate videos into presentations. Alternatively, users



Figure 2: A sequence of frames showing a video’s five phases in the following order: Title screen, intro view, chart animation (two frames),
final overview, and summary chart. The scene, automatically generated and rendered by ChartFlight, visualizes parliamentary election
results of the years 2005 and 2009 for all 16 federal states of Germany. Finally, the summary chart compares the nationwide results of both
years.

could upload videos to a file hosting service to provide visualiza-
tions of their statistics for a larger audience. The generated videos
can also be post-processed with video editing software to add tex-
tual annotations or audio comments.

3 Features of ChartFlight

Next we provide a more detailed view of our prototype implemen-
tation. In this section we discuss the various features of ChartFlight
from a user’s point of view. In the subsequent Section 4 we provide
technical details of ChartFlight, in particular, how the user interface
is connected to the rendering engine. Furthermore, in Section 5, we
present some performance results.

The common structure of a generated video is shown in Figure 2.
A full video consists of the following five sections:

Title screen. The title screen displays general information about
the video like title, author, or data source. Title screens are always
two-dimensional and shown at the beginning of a video before the
actual three-dimensional camera flight.

Intro view. The camera is placed above the whole scene and shows
the map from a bird’s eye perspective. From this position the actual
camera flight starts by moving the focus of the camera down to the
location of the first chart.

Camera flight. The main part of each video is a camera animation
based on our generic model. The focus of the camera moves from
location to location where the individual charts are shown. Rather
than moving with constant speed from one position to another the
camera animation uses a more natural slow-in/slow-out approach.
Furthermore, the camera moves along a straight line to allow the
user to focus on the location the next diagram will appear. The
timing of the camera flight is set by default such that it is fast but

not hectic. A presenter should be able to say a short sentence during
the camera animation, for instance, to announce what data will be
shown next.

Final overview. Similar to the intro view the final overview, also
called outro view, shows the whole map. But at this time, all charts
are displayed as created during the camera flight allowing the user
to compare the charts.

Summary chart. This last part of a rendered video is optional and
may be used to show global or summary information. Similar to the
title screen a summary chart is two-dimensional and displayed on a
plane orthogonal to the camera’s view direction.

3.1 The web-based user interface

Basically, the web client consists of eight webforms and several
additional web pages that provide information about the current
progress. Furthermore, there are many examples and tutorial pages
to help the user to select the right parameters and provide her data
in the right format. By filling in these webforms the user defines
the settings to be used for generating the video.

Most of the webforms consist of two parts: one with basic settings
that are important or even required for creating a video and an op-
tional part containing advanced settings. Users decide individually
whether they want to modify these settings or use default values and
just care about the basic input fields. Furthermore, each webform
checks the correctness of all inputs, if required settings are missing,
notifies the user by changing the color of the input field, annotating
it with a small exclamation mark as well as displaying a global error
message.

For the process of creating a video the user goes through our web-
forms in the following order:



Figure 3: A description text and a example page lead through all
available settings in the bottom part of the appearance form. There
users simply choose their favored options. Additionally, advanced
options for further adjustments may be opened.

Title form. Users choose between two different types of title
screens. Either they upload an image, which will be displayed as ti-
tle, or they decide to generate a title screen based on their text input,
for instance, title, subtitle, author etc. In the advanced settings users
may customize colors or determine the layout of the title screen.

Appearance form. Here, users determine global settings like back-
ground and font color, but also the type and color palette of the
charts (Figure 3). Currently, as shown in Figure 4, four chart types
are available: Pie charts, ring charts, bar charts, and line charts.
These chart types have different advantages with respect to occlu-
sion, perspective distortion, relative size, and readability of labels.
The advanced settings include options for the size and material of
the charts.

Animation form. This form provides only a few basic settings for
the animation, for example, users may choose to fade in charts
slowly. In contrast, there are a lot of advanced settings including
different animation intervals, for instance, how long the title screen
is displayed or how long it takes to move the camera from one chart
to another.

Summary chart form. If users opt for a summary chart, they can,
similar to title form, either upload an image or provide data to gen-
erate a flat 2D chart. In the advanced section users may change
animation intervals.

File uploads form. Here, users specify and upload up to four files,
namely the map as image file, the data set as text or CSV file, and
images for the title screen and the summary chart. Uploading a
map and a data set is required for creating a video, while the other
uploads depend on settings made in the previous webforms. Thus,
only if users decide to use an image for title screen an additional
upload box will appear in this form. During the uploading process
file types and sizes are checked and if accepted information about
those files are displayed. In addition, the file containing the data
set will be validated. If it does not match the format introduced in

Section 3.2, it will be rejected and users will be informed about the
errors. Each error description is listed along with the line, in which
it occurred.

Diagram locations form. This webform provides two ways to link
every single table to a location on the map. Users choose to either
select the locations interactively on a map using a Java applet or en-
ter their coordinates as numbers in an input form. Figure 5 shows
the Java applet displaying the map of Germany and 16 marked lo-
cations.

Miscellaneous form. This webform covers all settings that do not
fit one of the other categories. For instance, users might change the
video resolution suggested by ChartFlight. Furthermore, they must
enter their e-mail address in this form, such that ChartFlight is able
to contact them once the rendering of the preview images or the
video is finished.

Overview form. This final webform provides an overview of all
webforms and indicates whether they have been successfully com-
pleted. Users may return to each of the forms or confirm their set-
tings and make ChartFlight start rendering preview images.

When users submits their data, a job with a unique identifier is ini-
tiated. It contains all information needed to generate a chart flight,
namely the map, the data set linked to an ordered set of locations,
and all user settings. By means of the job identifier users are able
to download the rendered video, look at preview images, or get ad-
ditional information about the current state of the job.

Figure 4: Different chart types: pie chart, line chart, ring chart,
and bar chart with a basic shading

Once preview images are available ChartFlight notifies the respec-
tive user via e-mail. Such an e-mail contains among others a link
to the preview web page of the job where users find snapshots of
different states of their video. This preview mechanism provides a
first overview of how the generated video will look like. Users can
either modify the settings and re-render all images, confirm it for
final rendering, or simply delete the job.

While the rendering of preview images only takes seconds, the
rendering of the video usually takes several hours, see Section 5.
Again, when the rendered video becomes available ChartFlight
sends a notification e-mail.

Both generated and uploaded data is kept on our server for a fixed
period of time (currently one month). Users access these data via



the given identifier. Moreover, they have the possibility to modify
and re-render their jobs.

Before we discuss the architecture and implementation of Chart-
Flight, we briefly return to our example — the presentation of elec-
tion results. Figure 2 depicts a sequence of six frames extracted
from a video that was generated by ChartFlight. It shows a com-
parison of the German parliamentary elections of the years 2005
and 2009. The left upper frame displays a title screen. Since we
just input strings for title, subtitle, author, etc., ChartFlight created
this title screen automatically using a standard layout. The second
frame illustrates an overview of the map of Germany, which we
also call intro view. It shows the situation just before the actual
chart flight when so far no charts have been displayed. The third
and fourth frame give you an idea of how the actual charts look
like. In this particular case we chose election results of Rhineland-
Palatinate visualized by ring charts. A final overview of all charts
is presented in Frame 5. Comparing the charts in the western part
of Germany with those in the east, one can easily see that the party
colored purple got more votes in Eastern Germany. Finally, the
sixth and last image shows a generated summary chart visualiz-
ing nationwide election results of 2005 and 2009. In contrast to
the three-dimensional diagrams where we preferred ring charts, we
decided to use bars instead, which facilitate a comparison of both
years.

Figure 5: Java applet displaying a map of Germany. In this ex-
ample a user has already set all available locations, which got an
individual numbering.

3.2 Simple file format for data sets

ChartFlight expects data sets to be stored in CSV files, i.e. text
files with comma separated values. This is a very simple, but
widely used format to exchange data between different spreadsheet
or database applications. Table 1 provides a small example cover-
ing two data tables for the actual chart flight, which implies that
we want to create only two three-dimensional diagrams, and a third
one for the summary chart. These tables can be easily converted to
a CSV file using commas as column separators.

The resulting CSV file contains a set of tables that are separated by
an empty line. The first table in the data set will be assigned to the
first user-defined location and considered first during a chart flight,
and so on. Users who want to create summary charts as well have
to append these data to the end of the same file.

The three tables in Table 1 contain both column and row headers

Diagram 1 Column 1 Column 2
Row 1 50 80
Row 2 50 20
Row 3 30 50

Diagram 2 Column 1 Column 2 Column 3
Row 1 21 70 50
Row 2 66 9 40

Summary chart Column 1 Column 2
Row 1 70 24
Row 2 54 56
Row 3 26 129
Row 4 99 12

Table 1: A small example of a data set accepted by ChartFlight,
which provides data for two three-dimensional diagrams on the
map and a two-dimensional summary chart.

(printed in italics). The column headers are used to name the indi-
vidual charts, for instance, one pie out of all stacked pie charts at a
chosen location. Each column of a table provides the data for such
an individual chart. In contrast, a row header describes a single el-
ement of an individual chart, for instance, one sector of a pie chart.
In addition, the row header defines the color of the element. This
means that elements with equal row headers will be colored the
same. For example, if you assign the color red to the row header
Row 1, every row with that description will be colored red. Finally,
the upper left entry of a table might be used to describe the whole
diagram or its location.

4 Architecture of ChartFlight

The rendering server consists of two components. For generat-
ing and rendering a scene we chose Blender, a free open source
3D content creation suite that provides a Python scripting interface
[Blender 2009]. The second component, which is actually connect-
ing the web server and Blender is a small Java console application
called JobListener. This Java application is essential for providing
ChartFlight to more than one user at a time, because it manages the
job database.

Figure 6: Background operations when processing a job

Figure 6 illustrates how web server and rendering server cooperate
and what happens in the background when users confirm their job
to render preview images or a video. The web interface is linked
to two other nodes — the user directory and the job database. The
former is created directly after users have started a new job and is
used to save all necessary information. More precisely, all uploaded
files will be moved to this directory and after users have confirmed
their job for rendering preview images an XML file containing the
settings will be saved there. Furthermore, when users confirm their



job it will be added to the database as indicated in Figure 6.

Now that the database contains the job, it is competing with other
jobs in a waiting queue. Basically, this means the earlier a job has
been added the sooner it will be processed. But using only this ap-
proach causes several problems. For instance, while ChartFlight is
rendering a full video, it is not possible to render preview images
because Blender is already in use. This means users have to wait
until all jobs added before their own are completely rendered, even
if they, for example, just want to change one letter of the title screen
and re-render the preview images. To solve these problems we de-
cided to use two different queues. One for jobs that are waiting for
preview images and another for those the full video shall be ren-
dered. But this leads to the problem that we would have to decide
which queue is more important and will be processed first. Finally,
we kept the idea of having two different waiting queues, but in our
current prototype it is possible to run two instances of Blender at a
time — one for creating preview images and one for rendering full
videos. Altogether, that means we completely separated both tasks.

Returning to Figure 6 the JobListener searches for the next job us-
ing the discussed waiting queue mechanism. If jobs were found and
no Blender instance for the respective task (preview images or full
video) is already running, the JobListener creates a new instance
and passes the required information. Creating a Blender instance in
our case means that Blender itself is started and a Python script for
generating the three-dimensional scene together with all animations
is executed. Thus, Blender has to access the user directory in order
to load images, the data set and all user settings. After the scene is
created Blender renders the required frames for either the preview
images or the full video and saves the result to the user directory.
The last task of the Python script is to send a notification e-mail to
the user.

4.1 Generating videos with Python & Blender

As already mentioned, we use Blender to generate and render chart
flights. Both can be done by utilizing the Python API of Blender,
which provides access to the most common features via the pro-
gramming language Python. Basically, Blender uses scenes to de-
scribe a set of three-dimensional objects and their animations. Note,
that all objects even if they are not displayed for a certain amount
of time, i.e. a certain number of frames, have to be available in the
scene before the actual animation is applied and rendered. In other
words, a dynamic creation of an object at a specific frame is not
possible. Instead, we resort to different techniques like modifying
the alpha values of object to make them appear.

We implemented several Python scripts to automatically create such
scenes and animations based on the user settings and data sets.
These scripts provide classes to send notification e-mails, to parse
the CSV files and the user settings, to store them in internal data
structures, and to use these to generate, animate, and render a scene.

Before describing these classes in more detail, we briefly describe
how animating 3D objects in Blender, henceforth called Blender
objects, works.

Basically, a Blender object can be considered as a set of different
properties like geometry, location, or material settings (e.g. color,
specularity, ...). All these properties are relevant when rendering
images showing a Blender object. In order to animate a Blender
object you have to use so called IPO curves to change the value of a
property over time. Therefore, each animated property has it’s own
individual IPO curve. In general, an IPO curve can be considered as
a two-dimensional curve that links the value of a property (y-axis)
to a specific frame index (x-axis). For instance, if we want to fade
in a Blender object, we set its alpha value at the first frame index of

Figure 7: Plot of a ChartFlight video.

the animation to 0.0 (transparent) and at its last frame index to 1.0
(opaque). Given these two values Blender is able to interpolate a
value for every frame index in between the start and end frame in-
dex of the animation. For all other frames indices, i.e. those before
the start index and after the end index of the animation constant val-
ues based on the first and last value will be assigned. In summary,
an IPO curve exactly defines the value of a property at each point
in time.

This said, we can now have a closer look at the classes provided by
our Python scripts.

Main class. For every single job the main class will be initialized
and the scene generated each time Blender is started. The main
class links all other parts to load data, create an animated scene,
and render it to produce the final video. For all these tasks Python
classes are provided.

Title and map classes. The Title class is responsible for the title
screen, the layout of all text objects on it and its animations. The
Map class creates a plane for displaying the uploaded image. The
image is mapped onto this plane using both classes of the Python
API and the utility classes considered below to generate materials
and textures and assign them to that plane. In addition, special
properties like alpha mapping may be set individually.

3D charts. The BasicChart class contains the main function-
ality for every kind of 3D chart. These are among others member
variables and methods for maximum width and height to define the
maximum space in which such a chart is displayed. Furthermore,
basic animation settings are stored here. Classes like PieChart,
RingChart, BarChart, and LineChart implementing spe-
cific chart types are derived from the BasicChart class. Each of
these classes has its own method to create charts for the full data
set. In other words, all charts are created from the start but are not
visible.

During the generation of all charts the information about where and
when charts appear is computed based on the ordered chart loca-
tions provided by the user. Finally, the indices of the start and end
frames of the animation of each chart are stored in a list of frame
tuples. This list is accessible by other classes, for instance, the
Legend class uses the frame tuples to generate the animation of
each chart legend, i.e. to define the IPO curve of its alpha value.

2D summary charts. The Basic2DChart class covers the main
properties of all two-dimensional charts and the specialized classes
for the different chart types are derived from it. We implemented a
top level class that uses these classes in order to create a summary



chart. In particular, this gave us the possibility to just initialize
the top level class with the respective values to generate the full
summary chart.

Scene classes. There are two classes that are relevant for render-
ing the complete scene — Lighting and CameraAnimation.
For the lighting it is important to have a setup that both illuminates
every region of the map as well as all displayed charts. Consid-
ering these restrictions we decided to use sun lamps in Blender,
which have a constant light falloff. To illuminate the whole scene
from all directions the Lighting class puts four sun lights at each
corner of the map and one pointing towards the cameras view direc-
tion. The camera itself is created, positioned, and animated by the
CameraAnimation class based on the chart locations, the list
of frame tuples, and a predefined camera offset that provides the
distance between the position of a 3D chart and the camera itself.

Figure 7 shows the plot of a complete ChartFlight video. Cam-
era animations are used as transitions between intro, outro, and
chart animations. The chart animations are hierarchically subdi-
vided into animations of the levels (at every location several charts
can be shown) and at each level, the parts of the chart, for instance,
the sectors of a pie chart, are animated. In order to show the full
map in the intro or outro view a global position is calculated based
on the width of the map and the movement from/to this location is
added as a camera animation.

Utility classes. Our utility classes only provide static methods,
thus that one can easily apply them to different kinds of objects
or use them within other classes without having to create an in-
stance. While most of these methods use functions from Blender’s
Python API to generate, for example, materials or IPO curves for
animation, some provide mathematical calculations or create ba-
sic objects. An important utility class is the the Ipo class, which
provides methods to compute IPO curves for animation. Given a
reference to an object and some animation settings, e.g., a sector of
a pie chart or the indices of the start and end frames, those methods
create the specific animation. For instance, a method for creating
a fading animation assigns an IPO curve to the alpha property of a
given object.

5 Performance

Next we present and discuss results of our experimental studies,
which deal with two basic questions:

• How do user settings, for instance, different resolutions effect
rendering times?

• How many videos can a single server render per day?

For our evaluation we used two different hardware setups. The
first is named setup D for development because it was also utilized
for developing our prototype and the second, assigned with the to-
ken S for server, shows the specifications of the current ChartFlight
server.

Hardware Setup D
CPU Intel Core2Duo 6400 @ 2.13GHz
MEM 1024MB DDRII 667MHz
GFX NVIDIA GeForce 7900 GTO 512MB
OS Windows XP Professional SP 3

Hardware Setup S
CPU Intel Core2Quad Q9300 @ 2.50GHz
MEM 3894MB DDRII 800MHz
GFX NVIDIA Quadro FX 570 256MB
OS Ubuntu 8.04.3

5.1 Experiment: Parameter settings

For comparing rendering times of different settings we had to set
up a basic test scene first. For our test scene ChartFlight had to
render exactly four stacked pie charts with four segments each. For
the map itself we took the image of Germany as seen in Figure 2.
Using this basic scene we measured rendering times starting with
that frame the legend of the chart is shown the first time until the
animation of the chart is completed and the camera moved to the
next location. For the camera movement we assumed five Blender
units which is half of the maps width and therefore a good average
value. Considering these frames gives us an average duration for
rendering exactly one chart and hence, it may be used to extrapolate
rendering times for whole chart flights displaying several diagrams.

Our first experiment was to compare rendering times for four dif-
ferent resolutions. Based on our test scene and hardware setup D
we measured the values shown in Table 2.

Video 1 Video 2 Video 3 Video 4
Resolution 512x384 640x480 800x600 1024x768
Pixels 196608 307200 480000 786432
Rendering time 18:42 min 26:07 min 36:35 min 56:08 min
Extrapolation 2:29:36 h 3:28:56 h 4:52:40 h 7:29:04 h
per frame 1.045 s 1.459 s 2.044 s 3.136 s

Table 2: Comparison of rendering times for different resolutions.
All videos were rendered using pie charts and a test scene of 1074
frames, which is equivalent to a video length of 42.96 seconds.

Not surprisingly, the rendering time increases with a higher resolu-
tion. But if you compare the amount of pixels that were rendered for
one frame regarding the first and the last video you get a ratio of 1:4
while the rendering time is only three times higher. This shows that
in our case rendering times do not increase as fast as the amount of
pixels when rendering higher resolutions with the internal renderer
of Blender. Based on the measurements in Table 2 we also extrap-
olated the rendering times for a video with eight locations, i.e. a
video consisting of camera flights to eight different locations and
animations of the test charts at these locations.

Due to the fact that all charts have a different geometry and thus
visualize data differently we ran a second experiment that examined
if and how the available diagram types effect rendering times. For
this experiment, we used a fixed resolution of 800x600 pixels and
varied the diagram type. Table 3 shows the results of our second
experiment.

Video 1 Video 2 Video 3 Video 4
Diagram type Pie chart Ring chart Bar chart Line chart
Frames 1074 1074 1074 344
Video length 42.96 s 42.96 s 42.96 s 13.76 s
Rendering time 36:35 min 35:55 min 37:47 min 11:02 min
per frame 2.044 s 2.007 s 2.111 s 1.924 s

Table 3: Comparison of rendering times for different diagram
types. All videos were rendered in a resolution of 800x600 pixels.

The rendering times as well as the file sizes of the first three videos
with pie, ring, and bar charts differ only slightly. It took around
36 to 37 minutes to render 1074 frames. The differences are in the
range of milliseconds, if we calculate average times for creating a
single frame.

The fourth video, which displays line charts, needs 68 percent less
frames (344 compared to 1074) and consequently less time (13.76
s). As a single line in the line chart represents several values at the



same time while, a segment of a pie chart or a bar of a bar chart
only represents a single value. Hence, the animation of a single
line takes less time than animating the sectors of pie chart or the
bars of a bar chart one after another. Obviously, less frames lead
to shorter videos and smaller file sizes. Rendering a single frame
(1.924 seconds) takes only 7 percent less time compared to the other
chart types.

5.2 Experiment: Throughput

When setting up the current ChartFlight server we wanted to know
how fast this hardware configuration (Setup S) renders full videos
and therefore, we measured rendering times of different example
scenes. In contrast to the experiments discussed above, for this ex-
periment we did not use test scenes, but real-world examples, which
means we searched the web for freely available statistics to visual-
ize them using ChartFlight. Altogether, we rendered six videos in
two different resolutions. Table 4 shows our measurements ordered
by video length.

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6
Video length 0:02:34 0:04:02 0:04:09 0:04:16 0:05:18 0:05:55

Rendering
800x600 1:04:56 1:41:21 1:43:50 1:49:32 2:24:35 2:28:04

1024x768 1:32:32 2:24:49 2:27:10 2:36:06 3:24:42 3:27:59
Ratio 142.5% 142.8% 141.7% 142.5% 141.6% 140.5%

Table 4: Rendering times for six different real-world examples of
various video length. Therefore, we considered the results for two
different resolutions and calculated their ratio.

Based on our experimental data we extrapolated how many videos
ChartFlight is able to render per day. Our videos have video length
of 4:22 minutes on average. For rendering all jobs in a row the
rendering engine would take 11:12:18 hours for a video size of
800x600 pixels and 15:53:18 hours for 1024x768 pixels. Thus,
considering average videos of 4:30 minutes, ChartFlight is able to
render about 12 videos of smaller and 8 videos of higher resolution
per day. Videos of smaller resolution are often sufficient, for exam-
ple, when integrating them into presentations or uploading them to
video hosting web sites.

ChartFlight currently uses the rendering engine of Blender 2.46.
Recent builds of the upcoming versions 2.5/2.6 implement opti-
mized ray tracing techniques [Blender Ray Tracing 2009], i.e. ren-
dering is up to ten times faster. To find out how much these opti-
mizations will affect scenes generated by ChartFlight, we manually
modified a high quality version of the cancer incidence example
(Figure 1, e) in such a way that both versions of Blender (2.49 and
2.5 Alpha 2) are able to render it. Finally, we chose hardware setup
D and measured slight improvements per frame. When a stable re-
lease is available, it simply requires some extra effort to port our
Python scripts to the new Blender Python API.

Independently from current or upcoming versions, Blender pro-
vides a variety of different render settings, which may further im-
prove the rendering speed. In a small pre-study we investigated
the most important settings, for instance, those that improve perfor-
mance on multi-core CPUs. For each option we measured rendering
times for different inputs. As test scene we used the election results
example shown in Figure 2. We found that while keeping the qual-
ity of the rendered video, with adapted settings the ray tracer of
Blender saved between 12 and 25 % of the time.

6 Related Work

Related work can be roughly categorized into tools for creating vi-
sualizations, videos that have been generated, and interactive appli-
cations that provide a data set a user can explore. Furthermore,
according to the categories presented in [Ghanam and Sheelagh
2008], the visualization ChartFlight produces may be considered as
a combination of an abstract 3D visualization due to the displayed
charts and, in a wider sense, a Virtual Environment visualization
due to the real-world ground plane.

Although ChartFlight visualizations do not support user interaction
and due to ray tracing frames cannot be rendered in real-time, it
still has similarities—especially in terms of system architecture—
with interactive approaches like [Yoon and Neumann 2000] or
[Noimark and Cohen-Or 2003]. In comparison to ChartFlight these
approaches provide general techniques for remote rendering and
enable interactive 3D graphics for low-performance hardware de-
vices. While the former approach also requires image rendering
on the client side the latter one uses remote rendering exclusively.
Rendered frames are then translated via MPEG-4 streaming.

code swarm is a tool that produces videos of software evolution.
More precisely, it visualizes the history of commits in a soft-
ware archive focusing on developers and the files they commit-
ted [Ogawa and Ma 2009].

Gapminder is a project that is based on a web application called
Trendalyzer (Gapminder World), which visualizes statistical time
series of different nations. Using Trendalyzer one can interactively
compare different statistics from a given pool, relate them to each
other, and animate their changes over time. Moreover, Gapminder
provides videos of lecturers who present their observations using
Trendalyzer [Rosling et al. 2004].

The idea of gCensus is to utilize Google Earth for visualizations.
Users simply select statistical data from a given pool via a webform
and generate a file. After importing this file into Google Earth they
can browse the selected data interactively [gCensus 2007].

By combining Google Earth with GPS data the GPS Visualizer
helps users to create maps and profiles. In addition, geographic
data can be visualized, which basically means that users define lo-
cations on a map and connect data to it (e.g. business locations,
geotagged photos) [GPSVisualizer 2009].

A commercial tool that is probably closest to the idea of ChartFlight
is called Easy Chart 3D GEO. In contrast to our approach this prod-
uct is a desktop application that mainly produces overview images
of a map and the provided data displayed as charts. Nevertheless,
users of Easy Chart 3D GEO may create interactive standalone vi-
sualizations as Windows executables or videos showing charts sep-
arately [Easy Chart 3D GEO 2009].

The CyberNet project is an interactive application developed for vi-
sualizing dynamic data in a three-dimensional virtual world. While
ChartFlight works with a fixed amount of data, CyberNet con-
stantly gathers new data and updates the visualization. Therefore, it
uses techniques for automatically mapping information onto visual
metaphors. These may be both real-world (city, solar system) and
abstract (cone-tree) metaphors depending on the users’ choice [San-
tos et al. 2000].

Finally, the videos produced with ChartFlight also bear some sim-
ilarity to weather forecast flights, which are sometimes used in
weather forecasts on TV. They show animated weather effects dur-
ing a flight over a 3D map typically from one city to another or from
coast to coast.



7 Conclusion

In this paper we have introduced the chart flight metaphor and our
web application, which allows end users to generate presentation
videos for their own data sets. We also presented some implemen-
tation details and the results of two experiments to assess perfor-
mance of our current implementation.

While our current hardware setup is able to render several videos
per day, it does not scale for access by larger numbers of users.
However, to scale our web application we have several possibilities:

• Increase number of rendering servers: With slight modifica-
tions it is possible to distribute renderings of full videos over
different computers and keep the main server for creating pre-
view images and providing the web interface.

• Enhance rendering process: For instance, those frames that
just show a chart for a certain period of time without any an-
imation could be rendered only once and afterwards dupli-
cated. According to the small pre-study at the end of Sec-
tion 5.2), running a detailed study with different render and
also material settings in Blender could further improve ren-
dering speed.

• Replace Ray Tracer: As described in Section 5.2 replacing
the old rendering engine of Blender may improve the per-
formance of ChartFlight. Due to the scripting functions of
Blender, it is also possible to use other rendering engines,
which might outperform even the new ray tracer of Blender
2.5.

While we have used charts to depict information at the different
locations on a map, our approach can be adapted to many other
kinds of diagram types and data visualization techniques. Thus,
for instance, at each location relations could be visualized using
graph visualizations or multivariate data could be visualized with
parallel coordinates. Thus, the chart flight metaphor can be seen as
an instance of the more general metaphor of data flights.

ChartFlight has not extensively been used in practice so far. There-
fore, future goals are to conduct two different user studies. Firstly,
a usability study may give insights on how test persons make use
of the web-interface of ChartFlight. Secondly, a study that inves-
tigates the effectiveness and usage of videos generated by Chart-
Flight and compares it to common static alternatives could help
users to choose an appropriate visualization technique for their data.

References

BLENDER RAY TRACING, 2009. Blender - Ray Tracing Optimiza-
tion. http://www.blender.org/development/release-logs/blender-
250/ray-tracing-optimization/ (accessed Apr 2010).

BLENDER, 2009. Blender. http://www.blender.org (accessed Sep
2009).

EASY CHART 3D GEO, 2009. Easy Chart 3D GEO.
http://www.geobrush.com/ (accessed Sep 2009).

EUROPEAN COMMISSION, 2009. European Commission Eurostat.
http://ec.europa.eu/eurostat (accessed Aug 2009).

GCENSUS, 2007. gCensus - Free Online GIS.
http://gecensus.stanford.edu/gcensus/index.html (accessed
Sep 2009).

GHANAM, Y., AND SHEELAGH, C. 2008. A Survey Paper on Soft-
ware Architecture Visualization. Technical report, University of
Calgary, June. http://hdl.handle.net/1880/46648.

GPSVISUALIZER, 2009. GPS Visualizer - Do-It-Yourself Map-
ping. http://www.gpsvisualizer.com/ (accessed Sep 2009).

NOIMARK, Y., AND COHEN-OR, D. 2003. Streaming Scenes to
MPEG-4 Video-Enabled Devices. IEEE Computer Graphics and
Applications 23, 1, 58–64.

OGAWA, M., AND MA, K.-L. 2009. A Design Study in Organic
Software Visualization. Proceedings of IEEE Transactions on
Visualization and Computer Graphics (InfoVis 2009) 15, 6.

ROSLING, H., RÖNNLUND, A. R., AND ROSLING, O. 2004.
New software brings statistics beyond the eye. In Proceedings of
OECD World Forum on Key Indicators, Palermo.

SANTOS, C. R. D., GROS, P., ABEL, P., LOISEL, D., TRICHAUD,
N., AND PARIS, J. P. 2000. Mapping Information onto 3D Vir-
tual Worlds. In Proceedings of IEEE International Conference
on Information Visualization, 379–386.

STATISTISCHES BUNDESAMT, 2009. Statistisches Bundesamt
Deutschland. http://www.destatis.de (accessed Aug 2009).

YOON, I., AND NEUMANN, U. 2000. Web-Based Remote Ren-
dering with IBRAC (Image-Based Rendering Acceleration and
Compression). Comput. Graph. Forum 19, 3.


	hinweis: (C) ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings WEB3D 2010 { July 2010}  http://doi.acm.org/10.1145/1836049.1836068


