
Making Programmers Aware Of Refactorings

Peter Weißgerber Benjamin Biegel Stephan Diehl

University of Trier, 54286 Trier, Germany

{weissger, diehl}@uni-trier.de benjamin.biegel@gmail.com

Abstract

Modern integrated development environments, such as
ECLIPSE, provide automated or semi-automated refactoring sup-
port. Despite this support, refactorings are often done manually
— either because the developer is not aware of the tool support
or because he is not aware that what he did was a refactoring.
Moreover, as we found in [7] programmers tend to do a bad job in
documenting the refactorings they have performed or even do not
document them at all.
In this paper we present the design rationale of a plug-in for

the ECLIPSE development platform that informs programmers
about the refactorings they have performed manually and provides
hyper-links to web sites describing these. The plug-in is currently
under development. Finally, it should support the developer in
documenting refactorings by appending an exact description of
each performed refactoring to the CVS/SVN log message. For such
refactorings that have been done manually, but can be performed
automatically using ECLIPSE, our tool should inform the devel-
oper that this tool support exists and it is much safer to use it than
to implement the refactoring manually.

1. Introduction

In evolving software systems, refactoring tasks are virtually
essential too keep the code maintainable and the code structure
understandable, and thus, are part of the daily work of a devel-
oper [6]. However, if done manually, refactorings can be error-
prone. Thus, Fowler’s book [3] contains a large catalog of refac-
torings and for each of it a description how it is implemented
correctly. An additional problem is that, as we found in earlier
work [7], for a project such as TOMCAT3 less than 10% of all
refactorings are documented in the log messages of the software
repository.

Thus, a tool that makes the programmer aware of his refactor-
ings, provides links to web pages explaining these, and helps to
document these, would certainly be helpful.

2. Refactoring Identification

This section gives a short overview on our refactoring detection
approach, which is described in detail in [7]. In summary, this
approach works in three phases:

Preprocessing: Find out which code blocks (classes, fields,
methods; all identified by their fully-qualified signature)
have been added and deleted compared with an earlier ver-
sion of the software (e.g., the latest version in the repository).

Signature-based Identification: Compare the added and re-
moved code-blocks using a signature-based approach

to find refactoring candidates. E.g., if the method
doComputation(int, int):double has been re-
moved and the method compute(int, int):double
added to the same class, we detect a candidate for aRename
Method refactoring.

Ranking and Filtering: Rank the candidates using code clone
detection on the old resp. new body of the block. Filter out
all candidates below a certain rank.

The remaining candidates are presented to the user. Obviously,
the quality of these candidates strongly depends on the exact con-
figuration of the clone detection and the filter. However, discussing
these configuration details is beyond the scope of this paper. In-
stead, we focus on how to leverage the information about identified
refactorings to make programmers aware of refactorings, improve
the documentation of refactorings in log messages, and help to
prevent errors.

Currently, we detect move, as well as rename refactorings,
changes to the visibility of a symbol, and parameter addi-
tions/deletions to/from methods. Additionally, we want to record
all refactorings that are done using the ECLIPSE refactoring func-
tionality.

3. Integration in ECLIPSE

In the following we describe how we intend to integrate our
refactoring identification approach into ECLIPSE.

A Refactoring View in ECLIPSE

As the space in this paper is very limited, we do not describe each
feature separately. Instead, we illustrate how our tool could look
like and how it can be used by a programmer by means of an ex-
ample.

Figure 1 shows a mock-up how the user interface of our
ECLIPSE plug-in could look like. The list of identified refac-
torings is presented in its own view next to the list of problems,
declarations, the console, etc.. The first line contains a summary
of how many refactorings have been identified, and how many of
those have been performed manually respectively automatically
(using the ECLIPSE refactoring tool).

In the table below the summary, each line shows information
about a single identified refactoring. The first column of each line
contains the refactoring kind, while the second column contains a
detailed description of the refactoring. The third column indicates
whether this refactoring has been done automatically or manually.
Next, links to web pages with additional information on this kind
of refactoring are listed. For example, we can link to the particular
sub-page below www.refactoring.com (the web page of the
book [3] which also includes the refactoring catalog). The last

1st Workshop on Refactoring Tools (WRT'07)

58



Figure 1. Example how the Eclipse integration could look like

two columns provide check-boxes to approve the refactoring and
to automatically add a description of it to the log message when it
is committed to the repository.

To make programmers really aware of new refactorings we also
intent to show a pop-up every time new refactorings have been
identified. Obviously, such a pop-up can annoy developers who
are experienced enough to watch the refactoring list anyway or
who are not interested in this functionality. Thus, this pop-up
should be enabled by default but may be disabled easily.

Options

In the next paragraphs, we discuss technical issues respectively
design options.

When to update and show the refactoring list? There are
several options when the refactoring list can be updated: Our first
idea was to update the list on request, i.e. every time the user
pushes a particular button. The advantage would be that the com-
putation of the refactoring candidates (which may cause latency
on slow systems) is only done when the user requests it. However,
requiring the programmer to push a button conflicts with our goal
to make him aware of refactorings. Thus, we dismissed this ap-
proach and decided to update the list automatically on save, that
means each time a file is saved to the disk. If the pop-up option is
enabled, also a pop-up window opens then, provided a new refac-
toring is detected. Finally, the third option is that the list of refac-
torings is updated and presented when the developer tries to com-
mit his changes to the repository. If only this option (and not “on
save”) is used, the problem is that the developer is informed about
his changes quite late, but at least before they get available to other
developers. We decided to implement this option additionally to
“on save”: if the pop-up is enabled, it should be shown again be-
fore the commit operation is executed.

How to get the changes? As explained in Section 2 we need
to compare removed code block with added code blocks in order
to identify refactorings. Thus, obviously the current version of the
software (as shown in the workspace) has to be compared with
some older version. The first approach would be to take the older
version from the local history of the changes within ECLIPSE 1.
This approach should work quite fast and be easy to implement
because no access to the software repository (which could be a
SCM system like CVS or SUBVERSION) is required. However,
as the memory to store this local change history is limited within
ECLIPSE, old changes in a session can get lost. Furthermore, the
local history is cleared whenever ECLIPSE is restarted. Thus, re-
trieving the older version from the repository enables us to identify
more refactorings under certain conditions.

1The local history is anECLIPSE feature that allows to browse through

the n latest changes performed in an ECLIPSE session.

4. Related Work

While there exists tool support for performing refactorings in
most of today’s programming IDEs [5] only few researchers have
tried to identify refactorings automatically [2, 7, 1].

Henkel and Diwan have shown that is useful to record automat-
ically performed refactorings [4]. Their CATCHUP tool records
refactorings performed with the ECLIPSE tool and allows to re-
apply these to client code. In contrast, we additionally take identi-
fied refactorings into account and help the programmmer keeping
track of the refactorings he has done.

5. Conclusion

In the introduction we have motivated why an ECLIPSE plug-
in that makes programmers aware of refactorings and helps to doc-
ument these, would be a helpful tool. We explained how the refac-
toring identification works and presented how it can be integrated
reasonably into ECLIPSE.

While the refactoring detection algorithm has already been im-
plemented and evaluated [7], we have just recently started to im-
plement the ECLIPSE integration. We are very confident, that
we will be able to present a first prototype at the workshop pro-
vided that the paper is accepted. This prototype should at least
perform the refactoring identification and present a list of the iden-
tified refactorings including web links, each time a developer saves
his changes.

References

[1] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactorings via

change metrics. In Proc. Conference on Object-Oriented Program-

ming Systems, Languages & Applications (OOPSLA 2000).

[2] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. Finding Refac-

torings via Change Metrics. In Proc. European Conference on Object-

Oriented Programming (ECOOP 2006).

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactor-

ing: Improving the Design of Existing Code. Addison-Wesley, 2001.

[4] J. Henkel and A. Diwan. Catchup!: capturing and replaying refactor-

ings to support api evolution. In Proc. International Conference on

Software Engineering (ICSE 2005).

[5] E. Mealy and P. Strooper. Evaluating software refactoring tool sup-

port. In Proc. Australian Software Engineering Conference (ASWEC

2006).

[6] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Trans-

actions On Software Engineering, 30(2), 2004.

[7] P. Weißgerber and S. Diehl. Identifying Refactorings from Source-

Code Changes. In Proc. International Conference on Automated Soft-

ware Engineering (ASE 2006).

1st Workshop on Refactoring Tools (WRT'07)

59


