
ThreadRadar: A Thread-Aware Visualization for Debugging
Concurrent Java Programs

Oliver Moseler
University of Trier, Germany

moseler@uni-trier.de

Lucas Kreber
University of Trier, Germany

kreberl@uni-trier.de

Stephan Diehl
University of Trier, Germany

diehl@uni-trier.de

ABSTRACT
Due to non-deterministic behavior and thread interleaving of con-
current programs, the debugging of concurrency and performance
issues is a rather difficult and often tedious task. In this paper, we
present an approach that combines statistical profiling, clustering
and visualization to facilitate this task. We implemented our ap-
proach in a tool which is integrated as a plugin into a widely used
IDE. First, we introduce our approach with details on the profiling
and clustering strategy that produce runtime metrics and clusters
of threads for source-code artifacts at different levels of abstraction
(class and method) and the entire program. Next, we explain the
design of our sparkline visualization which represents the clusters
in situ, i.e. embedded in the program text next to the related source-
code artifact in the source-code editor. More detailed information is
available in separate views that also allow the user to interactively
configure thread filters. In a demonstration study we illustrate the
usefulness of the tool for understanding and fixing performance
and concurrency issues. Finally, we report on first formative results
from a small-scale user study.

KEYWORDS
debugging, concurrency, performance, Java, thread, visualization

ACM Reference Format:
Oliver Moseler, Lucas Kreber, and Stephan Diehl. 2021. ThreadRadar: A
Thread-Aware Visualization for Debugging Concurrent Java Programs. In
The 14th International Symposium on Visual Information Communication
and Interaction (VINCI ’21), September 6–8, 2021, Potsdam, Germany. ACM,
New York, NY, USA, 8 pages. https://doi.org/10.1145/3481549.3481566

1 INTRODUCTION
Today, almost every computing device is equipped with multiple
CPU cores. Developers can leverage this processor feature by using
concurrent programming to improve software performance. Stud-
ies show that concurrent programming is becoming more popular
across general purpose languages, such as Java [19, 25]. Developing
correct concurrent programs is difficult [23]. The non-deterministic
behavior and thread interleaving of concurrent programs renders
debugging of concurrency and performance issues even more diffi-
cult and time consuming compared with single threaded programs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VINCI ’21, September 6–8, 2021, Potsdam, Germany
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8647-0/21/09. . . $15.00
https://doi.org/10.1145/3481549.3481566

Figure 1: Examples of the thread visualization based on a
test-case run of Bug 1 (class WorkerManager, Section 5).

Reading and understanding the source code is an integral element
of every debugging task. Developers still lack on thread-aware
programming tools that facilitate the understanding of concurrent
programs [7]. Ideally, these should be part of their daily work envi-
ronment typically including an IDE.

In this work, we present our approach for visual debugging
of performance and concurrency issues. We implemented our ap-
proach in the CodeSparks-JPT debugging tool that augments the
source code with a thread-aware visualization in the source-code
editor of a widely used Java IDE, namely the Intellij IDEA. We use
statistical profiling based on stack sampling to compute dynamic
performance metrics for the entire program as well as for individual
source-code artifacts, such as Java classes and methods. The metric
shows the relative runtime consumption of an artifact with respect
to the overall profiled run of the Java program. Based on this metric,
we developed a visualization showing how runtime consumption is
distributed over clusters and types of threads executing the source-
code artifacts. The visualization is embedded in the source code
in a sparkline [24] manner (Figure 1). In combination with former
in-situ visualizations and other tool features it enhances program
understanding of concurrent programs. In addition to the in-situ
visualizations, more detailed thread information can be retrieved
on demand in a detail view or the overview window providing
features to further explore and filter the profiling data on the basis
of threads and source-code artifacts.

2 APPROACH
The first task during debugging is to reproduce the failing program
run. This can be done by creating a dedicated test case running
the program under inspection with a fixed input. In many situa-
tions such a test case only executes a fraction of the code base.
Furthermore, it can be assumed that the developer has a deep un-
derstanding of the source code to be debugged and expectations of

https://orcid.org/0000-0003-3118-4968
https://orcid.org/0000-0003-3558-6411
https://orcid.org/0000-0002-4287-7447
https://doi.org/10.1145/3481549.3481566
https://doi.org/10.1145/3481549.3481566

VINCI ’21, September 6–8, 2021, Potsdam, Germany Moseler et al.

Figure 2: Approach: Profiling, computation of metrics and
clustering. The runtime of each artifact a is the absolute fre-
quency of a divided by the total number of threads sampled,
here: 12 = 3 samples * 4 threads.

its dynamic behavior. In concurrent programming, and in particular
the debugging of concurrency bugs, source-code artifacts are po-
tentially executed throughout many different threads which might
have non-deterministic interleaving. Thus making it very difficult
to assess and distinguish to what extent a source-code artifact has
been executed by which thread. Consequently, for concurrency de-
bugging, it is hard to find the threads which are related to the bug.
Since concurrent programming also employs techniques to coordi-
nate threads, e.g. through synchronization mechanisms, another
aspect to characterize how program code is executed by threads is
added, for instance waiting on a lock in contrast to actively exe-
cuting instructions. As illustrated in Fig. 2, our approach addresses
these issues by combining a) statistical profiling, b) thread-aware
runtime metrics, c) clustering of threads on the basis of these met-
rics and d) interactive in-situ visualizations presenting the thread
information in the source-code editor:

Profiling. We utilize a statistical profiling, in particular a stack
sampling to periodically record the stack traces of all threads of a
run of an application.

Runtime metrics. From this, we compute a runtime metric for
each source-code artifact a. To this end, we aggregate all occur-
rences of a in the stack traces of all threads of all samples and
put this in relation to the complete sampling. We call this metric
the computational runtime of a. It indicates the relative frequency
of the source-code artifact being active in the stack traces of the
threads with state Runnable. We further disassemble the artifact
runtime of a into a-relative runtimes of of each thread t, i.e. the
ratio of the runtime that t spends executing code in a and the total
computational runtime of a.

Clustering. For each source-code artifact a, we cluster its execut-
ing threads on the basis of the a-relative computational runtime

of the threads. Therefore, we utilize the constrained k-means clus-
tering algorithm [26] with k = 3 to compute a maximum of three
clusters. We further use ϵ =max(0.01, 1/(2n)), where n is the num-
ber of threads executing the artifact as a must-link constraint on
the metric value and, the absolute difference of two metric values
as the similarity measure. Due to this clustering strategy, usually
all threads in a cluster have similar metric values. In other words,
the metric value of each thread is close to the average metric of
the cluster. To enforce the computation of clusters with threads
with low, intermediate and high metric value, we initialise the clus-
tering algorithm with three specially selected centroids, namely
the threads having the minimal, median and maximal metric value,
respectively. Our clustering strategy is supposed to support the
extraction of outlier threads to automatically reveal those threads
having different runtime behavior than others. In the context of
concurrency debugging, this might be beneficial to discover the
threads directly related to the actual root cause of the bug.

In-Situ Thread Visualization. The thread clustering also serves
the purpose to reduce the amount of data to design a scalable
visualization of the thread information which we will introduce in
Section 3. Furthermore, the restriction to amaximum of three thread
clusters not only allows to classify the threads in three runtime
categories but also fits in smoothly with design decisions for the
thread visualization.

3 IN-SITU THREAD VISUALIZATION
The conceptual design of the thread visualization was developed
on the basis of Java programs and performance data. In the follow-
ing, we introduce the visual requirements derived from this, lead
through the development of the visualization and discuss how it
applies to different levels of abstraction.

3.1 Visual requirements
Prior to the conceptual design of the thread visualization, we iden-
tified two essential visual requirements. First, the visualization
should be placed close to the source-code artifact it is related to,
such that the source code remains readable and the visualization
itself does not overlay any portion of the code. Second, the visual-
ization should be compact and have a fixed size independent of the
amount of profiling data.

Placement. The artifacts we address are Java classes and methods.
The most intuitive placement for a visualization for Java classes or
-methods is the header of their declaration. According to common
Java code formatting guidelines, there is at least one empty line
between class or method declarations, and thus, a height of two
lines is available for visualizations, namely the line of the header
of the declaration itself plus the empty line before the header.

Compactness & Scalability. We choose a radial design, namely a
variant of a pie chart, for Java classes and -methods which needs
constant space no matter how the underlying data grows.

3.2 The ThreadRadar visualization step by step
We illustrate the development of our radial thread visualization for
Java classes and methods by step-wise refinement. We started with

ThreadRadar: A Thread-Aware Visualization for Debugging Concurrent Java Programs VINCI ’21, September 6–8, 2021, Potsdam, Germany

Figure 3: Combining the circular lines indicating the three-
valued scale (a) with the pie chart with radii indicating av-
erage computational runtimes (b) and the pie chart with
weaker colored sectors and radii indicating the sum of the
computational runtimes (c) finally yields the ThreadRadar
visualization.

a simple pie chart approach. By applying the clustering
strategy outlined in Section 2, we map the profiled data
to the three sectors. This has also the advantage, that it is

feasible to select three clearly distinguishable colors to draw each
cluster, especially considering the small size of the visualization.
The angle of each sector indicates the percentage of threads in the
corresponding cluster with respect to the total number of threads
that executed the source-code artifact.

To emphasize threads which have high computational
runtime compared to all others, we use the radius of each
sector to represent the average metric value of the cluster.

Due to the restricted available visualization area, we do not use
a continuous scale, but instead a three-valued scale to depict the
average metric value.
To facilitate reading of the sector radii, we add circular lines indicat-
ing the levels of the three-value scale (Figure 3a). If there are only
a few threads with high metric value in a cluster, it would result in
a thin (small angled) sector with large radius, which visually sticks
out and would more likely attract the developer’s attention.

In addition to the average metric values, the visualization also
shows the sum of all metric values in a cluster. To this end, the
same sectors are used, but with different fill color and different radii
(Figure 3c). More precisely, each sector is drawn with the same, but
weaker color (same hue, but lower saturation) as in the previous
case and the sum of the metric values in the cluster is mapped to
the radius of these weaker colored sectors. Since the average metric
value will always be lower or equal to the sum of the metric values,
the weaker colored sector will be at least as large as the stronger
colored saturated one. The following examples show two cases
where the clusters have the same sizes, but different distribution of
metric values:

Two thread clusters. One (green) has many threads with
low metric value each, while the other (red) has few
threads with medium metric value each.
Two thread clusters. One (light green) has many threads
with low metric value each but these values sum up to
a value higher than 66%, while the other (red) has few

threads having low metric value each.
Drawing the three components discussed above on top of each

other into a single diagram yields the ThreadRadar visualization
(Figure 3d). To provide some information about the absolute num-
bers of threads and types of threads contained in all clusters, two
pedestals are placed on the right, one at the bottom and one upside
down at the top (Figure 3d). The lower pedestal shows the absolute
number of threads in the data set with respect to the source-code
artifact, here, threads executing a given Java method or any method
of a given Java class. In contrast, the upper pedestal displays the
absolute number of types of threads that executed the source-code
artifact. In Java, these types are java.lang.Thread and its sub-
classes. These two numbers help the developer to estimate the size
of each cluster and also provide an additional hint on how the
clusters might be distributed across different thread types. Thus, it
becomes easier to create hypotheses on how the code is actually
being executed amongst the threads. In order to inspect and get
more detail on the data represented by the ThreadRadar, the tool
provides a detail view which we describe in Section 4.2.

3.3 Considering different Levels of Abstraction
The ThreadRadar of a class in Java aggregates the profiling data
of all methods in this class. Therefore, the visualization shows
the runtime distribution of thread clusters across every method in
that class. To get more information about particular methods, the
developer can investigate the ThreadRadars of those methods. This
opens the possibility to compare methods of a single class with
each other, but also with methods of other classes.

Since the visualization presents its information on a thread-
cluster basis, we provide a thread-filtering mechanism introduced
in the next section. It allows to create the visualizations for arbitrary
subsets of threads.

As mentioned in Section 2, we also cluster threads on the level
of the entire program based on their computational runtime and
apply the ThreadRadar visualization on that level. Unlike the other
source-code artifacts, there is no natural location in the source code
representing the entire program. Therefore, we put the ThreadRadar
for the program in the Overview Window, which is also presented
in the next section.

4 IMPLEMENTATION
We implemented our approach as a plugin for an integrated devel-
opment environment IntelliJ IDEA [10].

4.1 At a Glance
The plugin allows to start the currently selected run configuration
with profiling enabled. Such a run consists of four phases: The
collection of profiling data, the post-mortem processing of the data,
i.e. the calculation of the computational runtimes, the matching of
the profiling results to source-code elements in the IDE and the
creation as well as the display of corresponding visualizations.

The data collection phase in CodeSparks-JPT is realized through
a JVMTI agent [17] which implements statistical profiling based on
stack sampling. After the JVM initialisation, the agent periodically
records the stack traces of all Java threads of any state (Runnable,
Waiting etc.) together with additional meta data, such as the class of

VINCI ’21, September 6–8, 2021, Potsdam, Germany Moseler et al.

Figure 4: Overview window showing the list of classes.

the threads and the corresponding Java file. This profiling approach
provides very low runtime overhead at the expense of accuracy.
The sampling rate is preset to 3ms, but can be adjusted. Altogether,
it provides heuristic information about the runtime behavior of the
program under inspection. In the post-mortem processing phase,
the thread-aware runtime metrics and other profiling results are
calculated. The profiling results are matched to the source-code
artifacts using the Program Structure Interface (PSI) [1]. The plugin
uses information from the PSI to place the visualizations relative to
the source-code artifacts.

Beck et al. [5] proposed a visualization for profiling-data on a
method level for the Eclipse IDE. We implemented similar visu-
alizations. Furthermore, we extended their visualization to class
level and developed a novel visualization for thread-related data on
different levels of abstraction (Section 3).

4.2 Other Features
In addition to the in-situ visualizations, the plugin displays more
information in two popup windows which contain several other
features mutually enhancing each other.

4.2.1 Overview Window. The overview window (Fig. 4) provides
two lists of source-code artifacts (methods and classes) sorted in de-
scending order according to their computational runtimes. Through
the entries in the list, it is possible to navigate to the respective
source-code artifact in the editor. The ThreadRadar placed in the
overview window corresponds to the thread clustering for the en-
tire program. It shows the clustering for all recorded threads based
on their computational runtime over all source-code artifacts. It can
serve as a starting point for debugging sessions and provides an
overview of all threads which are currently selected or deselected
by the filter.

4.2.2 Detail View. The in-situ thread visualizations only give a
rough impression of the data. A click on a ThreadRadar opens a
popup window presenting detailed information (Fig. 5). The detail
view consists of four areas, the info panel area (orange), the preview
area (blue), the thread selection area (green) and the global controls
(purple). All threads that executed the source-code artifact are listed
in an indented-tree view in the thread-selection area. There are two

Figure 5: Detail view with applied thread filter.

tabs which differ in the sorting of the threads – either by cluster
or by type. Each entry is composed of the name of the thread and
its computational runtime with respect to the source-code artifact
and is colored in the same color as the sector representing the
cluster which contains the thread. The entries are grouped by cate-
gories (either the name of the cluster or the thread type). With the
checkboxes, the developer can select single threads or a complete
category at once. The info panel shows detailed information on
both, the entirety of the current thread selection and the currently
hovered cluster in the preview area in two independent sub-panels.
This information includes the sum of the computational runtimes,
the number of different thread types and the total number of threads
in the selection.

Above all, the detail view allows to configure thread filters which
are defined through the thread selection. The application of these
filters results in the exclusion of all deselected threads globally
from the visualizations. A filter defines the threads considered in
the clustering algorithm in order to exclude less interesting threads,
which enables an incremental inspection of the data on the basis of
selected threads. Together with existing IDE features, the plugin,
especially the ThreadRadars, form a powerful source of information
for programming tasks which include program comprehension. In
particular, this applies to debugging of concurrent Java programs
as we showcase in a demonstration study in the next section.

5 DEMONSTRATION STUDY
To demonstrate our approach and, in particular, to illustrate the
usefulness of the ThreadRadar, in this section, we present two ex-
amples. For the first example, we present more detail and introduce

ThreadRadar: A Thread-Aware Visualization for Debugging Concurrent Java Programs VINCI ’21, September 6–8, 2021, Potsdam, Germany

1 public class Worker extends Thread {
2 public void run() {
3 WorkerManager.getInstance().register(this);
4 while(!Thread.currentThread().isInterrupted()) {
5 /* virtual load */
6 WorkerManager.getInstance().printWorkers();
7 WorkerManager.getInstance().interrupt(this);
8 }
9 workerThreadDone(); }
10 private void workerThreadDone() {
11 printf("%s done\n", Thread.currentThread().getName());
12 } }

1 public class WorkerManagerMain {
2 public static void main(String[] args) {
3 final int nrOfThreads = 10;
4 for (int i = 0; i < nrOfThreads; i++) {
5 new Worker().start();
6 }
7 timeout();
8 }
9 private static void timeout() {/* termination */} }

1 public class WorkerManager {
2 private static WorkerManager instance = null;
3 final Set<Thread> registeredWorkers = new HashSet<>();
4 static WorkerManager getInstance(){
5 /* virtual load */
6 if (instance == null) instance = new WorkerManager();
7 return instance; }
8 private WorkerManager(){/* virtual load */}
9 public void register(Thread worker){
10 synchronized (registeredWorkers){
11 registeredWorkers.add(worker);
12 } }
13 public void interrupt(Thread worker){
14 synchronized (registeredWorkers){
15 if (registeredWorkers.contains(worker)){
16 registeredWorkers.remove(worker);
17 worker.interrupt();
18 } } }
19 public void printWorkers(){
20 synchronized (registeredWorkers){
21 for (Thread thread : registeredWorkers)
22 println(thread.getName());
23 } println("------------"); } } }

Listing 1: Truncated Java code of Bug 1. The full Java code is available in the supplementary material [15].

the program code itself as well as the test case, and explain how
we conduct inspections with the help of the ThreadRadar. Finally,
we explain how the visualization points to the actual issue and
propose a fix. In the supplementary material [15], we provide
the plugin, the source code of the two examples as well as a
video briefly showcasing the features of our tool.

5.1 Data Race (Bug 1)
A prominent class of non-deadlock concurrency bugs are data races
due to insufficient synchronization. In the first example, we present
such a bug. The test case, i.e. class WorkerManagerMain (List-
ing 1) creates ten worker threads and terminates the run after
five seconds. Otherwise, the program would run infinitely which
is the observable manifestation of the concurrency bug. The in-
tended behavior of the program is that worker threads register on
a worker manager when they start. Until the worker threads get
the signal to stop, they keep running in a loop. After each iteration,
the workers inform the worker manager that they are ready to
be interrupted (class Worker in Listing 1). The worker manager
is implemented as a singleton. When a worker thread calls the
method interrupt(this) on the worker manager instance, it
is removed from the set of registered workers and the signal to
interrupt is sent (class WorkerManager in Listing 1).

When we run the test case, the ThreadRadar of the program
(Figure 6a) shows two thread clusters of in total ten threads (lower
pedestal) of one thread type (upper pedestal). Note, at this point
the threads of type java.lang.Thread were already excluded.

(a) Entire program. (b) Constructor of
WorkerManager.

(c) Entire program
with fix.

Figure 6: ThreadRadars from test-case runs of Bug 1.

We observe that a few worker threads have substantially lower
computational runtime. A look at the detail view of the ThreadRadar
of the program and especially at the type list confirms this, as two
worker threads turn out to be outliers (Figure 7a). Consequently,
we inspect the class Worker and in particular its run()-method.
Not surprisingly, the ThreadRadar of the run()-method and the
entire program are identical. The callee list of the run()-method
reveals that the callee consuming most computational runtime is
the method getInstance(). Therefore, we further inspect that
method which again, has a similar ThreadRadar as method run()
and the program (Figure 6a and 1). The only callee of the method
getInstance() that could affect runtime is the constructor of
the class WorkerManager. The lower pedestal of the Thread-
Radar of the constructor method shows that it is executed by ten
threads, namely all worker threads (Figure 6b and 1). This is suspi-
cious because in the singleton pattern, only one thread at all should
execute the constructor. Now we have found the defect in the code:
The method getInstance() is not properly synchronized. As a
consequence, multiple instances of the WorkerManager class ex-
ist and it is non-deterministic with which instance a worker thread
registers. In general, how many threads are registered in how many
instances is also non-deterministic. In a thread-safe implementation
of the singleton pattern only one thread is ever allowed to call the
constructor of the singleton class. A common fix to this bug is to
use double-checked locking within the method getInstance().
A run of the test case with this fix results in a ThreadRadar of the
program showing that a single thread consumes considerably more
computational runtime than all others, namely the thread that calls
the constructor of class WorkerManager (Figure 6c). Further-
more, in the fixed version the lower pedestal of the ThreadRadar
of the constructor of class WorkerManager always shows one
thread executing this method (in contrast to Figure 6b and 1).

5.2 Synchronization Granularity Issue (Bug 2)
In the second example, we investigate a Java implementation of the
producer/consumer pattern. In this pattern, two types of threads,
producer and consumer threads, are involved. Since all threads
access a shared storage, it requires synchronization. To achieve

VINCI ’21, September 6–8, 2021, Potsdam, Germany Moseler et al.

(a) Bug 1: buggy test-case run.

(b) Bug 2: buggy test-case run.

(c) Bug 2: run with the fix. (d) Bug 2: buggy test-case run.

Figure 7: ThreadRadars of the entire program for Bug 2 (a, b) and respective lists of thread types in the detail view (c, d).

maximal throughput in terms of entities produced and consumed
per second, the synchronization has to be implemented as fine
grained as possible. Since the complexity of the computations actu-
ally performed by producer and consumer threads are very similar,
we further expect that both, the aggregated computational runtime
of producer and consumer threads will each make up approximately
50% of the total computational runtime independent of the actual
number of threads used. In the example, a builtin Java monitor
together with corresponding calls to the methods wait() and
notify() is used to synchronize the access to the storage. Fur-
thermore, one producer and ten consumer threads are created. In
Figure 7b, the ThreadRadar of the entire program shows that the
source-code artifacts are executed by two clusters of threads. The
red cluster contains many threads with high total and low average
computational runtime, while the blue cluster contains few threads
with both, low total and low average computational runtime. The
detail view (Figure 7d) reveals that the two clusters match the thread
types, i.e. the red cluster solely consists of consumer and the blue
cluster of producer threads, respectively. The performance bug
consists in unnecessary notifications of threads on the monitor
although their condition to wait on the monitor still holds. This
results in unnecessary condition checks and postpones the activity
of the thread which can interact with the storage. The defect is
the use of a Java monitor which only provides one single implicit
monitor condition. To fix this, we replace the builtin Java monitor
(synchronized) with a monitor with explicit condition variables
(ArrayBlockingQueue [16]). Applying and running this fix re-
sults in the expected distribution of computational runtime across
the consumer and producer threads which is fully reflected by the
ThreadRadar (Figure 7c).

5.3 Discussion
With the two examples, we demonstrated the usefulness of the
ThreadRadar for investigating different kinds of bugs. With the
first example, we investigated threads of a single type which dis-
tribute over two clusters. This example constitutes a non-deadlock
concurrency bug due to a data race. With the second example, we
investigated two types of threads which distribute over two thread

clusters with no intersection. This example constitutes a perfor-
mance bug due to synchronization granularity issues. Overall, with
our two examples, we present use cases of the designed visualiza-
tion across both, a major concurrency bug pattern [12] as well as
synchronization performance issues [2]. Although the examples
of our demonstration study are not directly real-world bugs, they
where crafted on the basis of such bugs. Data race bugs similar to
Bug 1 can be found in bug tracking systems of popular Java open-
source projects such as Apache Batik. For instance, the concrete
bugs Batik-802, Batik-322 and Batik-939 are concerned with non-
blocking concurrency bugs due to a data race and their fixes also
present a double-checked locking solution. For Bug 2 we found the
producer/consumer pattern a fitting example. Not only because it is
a well known problem to most software developers but also that it is
a part of popular bug collections such as the Software-Artifact Infras-
tructure Repository [8]. Altogether, the ThreadRadar makes visible
how the computational runtime is distributed amongst threads of
the entire program as well as on the level of classes and methods.
It enables the exploration of the underlying data through features
such as thread and source-code artifact filtering. Furthermore, the
visualization facilitates code comprehension and, as a consequence,
debugging by providing valuable information and the ability to test
hypotheses. Through the visualization, we can distinguish between
buggy and intended program behavior which makes it possible to
manually assess code changes and, in particular, bug fixes.

6 FIRST EMPIRICAL RESULTS
In a small-scale user study, we asked two PhD students from a dif-
ferent research group at our department to debug two concurrency
bugs with and without the thread-aware visualizations. We used
Bug 1 from the demonstration study and another one which we
added to the supplementary material [15]. The participants had not
only to find the defect, but also to familiarize with the code.

During the debugging sessions, the participants were encour-
aged to follow the Think Aloud approach to verbalize their thoughts.
Afterwards, we conducted a group interview with both participants
to recap their experiences with our tool. It turned out, that par-
ticipant A actively used the visualizations whereas participant B
mostly read the program code. Both participants did not only find

ThreadRadar: A Thread-Aware Visualization for Debugging Concurrent Java Programs VINCI ’21, September 6–8, 2021, Potsdam, Germany

the bug when using the tool with the thread-aware visualizations,
but also fixed it. In a subsequent focus-group interview, they both
agreed that the thread-aware visualizations were helpful, in par-
ticular to verify their proposed bug fixes. One participant stated
that the coloring (weak and strong saturation) of the sectors were
comprehensible and allowed to obtain the required information
at first sight. While the small-scale user study only provided first
indications, that our tool, and with that our approach can support
concurrency debugging, it certainly helped us to test our study
design for future investigations.

Furthermore, we got formative feedback. One participant was
missing an absolute runtime value in conjunction with the relative
runtime metrics. The participant stated, that it was impossible to
asses if the program was running “a second or a week”. Although,
this information was not necessary to solve the problem, the partic-
ipant was curious to have that information. Another suggestion of
one of the participants was to show the distribution of the runtimes
of the threads within a cluster, because it could help to decide which
cluster to inspect. To achieve this, a histogram of the artifact-related
computational runtimes of the threads of a cluster could be added
to the detail view.

7 LIMITATIONS
As shown in the demonstration study, our approach can lead to
valuable insights for a variety of thread-related code issues. It re-
quires a test case that consists of the potentially relevant classes
and the program input that reproduces the suspicious behavior.
Beyond that, there are several limitations to our approach which
we discuss in the following.

Profiling. The use of a statistical profiling, here stack sampling,
has well known drawbacks [14]. In our investigations of concur-
rency bugs, the heuristical data was sufficient to catch all thread
behavior of interest. It was reasonable to utilize relative runtime
consumptions to point out exceptional behavior in terms of work
balance of threads and clusters of threads to each other. As men-
tioned in the small-scale user study, assessing if a program runs
seconds, minutes etc. is hard with the use of relative runtimes. To
tackle this, a combination of the statistical profiling with another
approach is imaginable or to approximate the absolute runtime val-
ues on the basis of the relative runtimes. The latter would be highly
error-prone, as assumptions have to be made about the degree of
parallelism.

Many concurrency defects such as race conditions are based on
event-ordering issues. With our approach, we focus on the visual-
ization of symptoms of concurrency bugs rather than the extraction
of the root cause in the first place.

Scalability. Long running programs that utilize many classes
potentially exhibit a large number of threads and types of threads.
Our clustering is currently limited to compute a maximum of three
clusters. Thatmight be too restrictive to describe thework balancing
behavior of such program runs. A completely different metric to
cluster threads might be appropriate. See for instance [18] where a
set of transactions, i.e. essentially stack traces, is partitioned into
groups of isomorphic tree structures to extract patterns. The use of
the thread-filter feature can mitigate the problem of a vast number

of threads andmakes our approach partially applicable. In particular,
the magic number of three clusters not only serves the purpose
of a smooth visual integration of the data into the source-code
editor but also turned out to be an adequate number of clusters for
debugging the concurrency defects that we examined so far.

Concurrency bug types. In this work, we concentrated on concur-
rency bug types such as data races and synchronization granularity
issues. Both of them have in common, that they are non-blocking.
Another famous type of concurrency bugs are resource and com-
munication deadlocks. In classical deadlocks, for instance dining
philosophers, all involved threads will be blocked at a certain pro-
gram point. Those are not directly visible in our approach because
we omit data of blocked threads in favor of actively running threads.
Even if we included all waiting and blocked threads in the clus-
tering metric, we did not detect any visual anomalies in any of
the examples we have examined so far. Therefore, at this stage,
deadlocks are out of scope of our approach.

8 RELATEDWORK
In their systematic mapping study on the visual augmentation of
source-code editors [22] Sulír et al. found, that only few work ex-
ists which augments source code with data from dynamic analyses,
such as profiling. For instance, Beck et al. [5] introduced in-situ vi-
sualizations for runtime-consumption data on the level of methods.
While their methodology is applicable for single threaded programs
and integrated into the Eclipse IDE, we implemented a similar ap-
proach for IntelliJ IDEA providing more levels of abstraction and in
particular, we aimed at concurrent programs. Cito et al. integrated
runtime-performance traces into the source-code editor by high-
lighting source-code elements, such as method calls and loops [6].
While they also provide tooltips to retrieve details on demand, their
approach neither utilizes further visualizations nor delivers insights
on concurrency. Senseo extends the IDE with interactive views
and in-situ visualizations presenting various dynamic performance
metrics [20]. Albeit their tool facilitates performance-optimization
tasks, no concurrency data is considered. Alcocer et al. [3] intro-
duce a radial sparkline visualization called Spark Circle integrated
in commit graphs to visualize memory and execution time changes
across different versions of the source code. While their focus lies
on performance changes related to the evolution of the software
system, we focus on concrete debugging of concurrency bugs.

There are many approaches to visualize concurrency based on
program execution traces. Karran et al. introduce SyncTrace, a vi-
sualization technique combining multiple variants of icicle plots,
edge bundling and various interaction possibilities for the analysis
of dependencies between threads [11]. UML-based diagrams, in
particular UML-sequence diagrams have been employed for visual-
ization of concurrency [4, 13]. Both, the tool ThreadCity [9] as well
as SynchroViz [27] use a specialised city metaphor to visualize the
static structure of a software system and combine it with a traffic
metaphor to outline thread activities. While SynchroViz focuses on
synchronization concepts, ThreadCity works with function calls
and makes use of pie charts to aggregate thread data. They group
threads into three static categories (incoming, internal and outgo-
ing calls). Furthermore, Röthlisberger et al. [21] utilize clustering to
map continuous distributions of dynamic metric values to a discrete

VINCI ’21, September 6–8, 2021, Potsdam, Germany Moseler et al.

six-valued scale. We similarly compute three thread clusters based
on computational runtime consumption. Most approaches focus on
data of inter-thread correspondence, such as caller/callee relation,
blocking and synchronization. In contrast to that, we take advan-
tage of the relative runtime consumption of threads aggregated for
source-code artifacts.

9 CONCLUSION
We presented our concurrency debugging approach which espe-
cially consists of augmenting the source code with a thread-aware
visualization in the source-code editor of Intellij IDEA. While sim-
ilar approaches focus on the visualization of pure runtime con-
sumption, we foster the awareness of source code being executed
concurrently by different threads. Although we developed the visu-
alization for the Java language in the first place, our approach is
certainly applicable to other programming languages which make
use of similar syntactical elements and programming-language
concepts. Similarly, while the ThreadRadar shows distributions of
runtime data, the visualization approach including the clustering
could be applied to other profiling data likememory usage or energy
consumption as well as other profiling approaches and metrics.

In a demonstration study, we applied our tool to analyze and
fix two bugs, in particular a non-deadlock concurrency bug and
a performance bug. With that, we showcased and discussed the
usefulness of the ThreadRadar for program-comprehension tasks
in the context of debugging. Subsequently, we outlined limitations
of our approach on various aspects. Thus, future work includes
scalability, other types of bugs, programming languages, and perfor-
mance metrics in particular, leveraging also waiting and blocking
time of threads. Through the conducted small-scale user study we
gained first formative results for our tool, as well as first evidence
that our approach can support the concurrency debugging process.

REFERENCES
[1] JetBrains s.r.o. 2020. Program Structure Interface (PSI) / IntelliJ Platform SDK

DevGuide. https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_
overview/psi.html

[2] Mohammad Mejbah Ul Alam, Tongping Liu, Guangming Zeng, and Abdullah
Muzahid. 2017. SyncPerf: Categorizing, Detecting, and Diagnosing Synchro-
nization Performance Bugs. In Proceedings of the Twelfth European Conference
on Computer Systems, EuroSys 2017, Belgrade, Serbia, April 23-26, 2017. 298–313.
https://doi.org/10.1145/3064176.3064186

[3] Juan Pablo Sandoval Alcocer, Harold Camacho Jaimes, Diego Costa, Alexan-
dre Bergel, and Fabian Beck. 2019. Enhancing Commit Graphs with Visual
Runtime Clues. In 2019 Working Conference on Software Visualization, VIS-
SOFT 2019, Cleveland, OH, USA, September 30 - October 1, 2019. IEEE, 28–32.
https://doi.org/10.1109/VISSOFT.2019.00012

[4] Cyrille Artho, Klaus Havelund, and Shinichi Honiden. 2007. Visualization of
Concurrent Program Executions. In 31st Annual International Computer Software
and Applications Conference, COMPSAC 2007, Beijing, China, July 24-27, 2007.
Volume 2. 541–546. https://doi.org/10.1109/COMPSAC.2007.236

[5] Fabian Beck, Oliver Moseler, Stephan Diehl, and Günter Daniel Rey. 2013. In situ
understanding of performance bottlenecks through visually augmented code. In
IEEE 21st International Conference on Program Comprehension, ICPC 2013, San
Francisco, CA, USA, 20-21 May, 2013. 63–72. https://doi.org/10.1109/ICPC.2013.
6613834

[6] Jürgen Cito, Philipp Leitner, Christian Bosshard, Markus Knecht, Genc Mazlami,
and Harald C. Gall. 2018. PerformanceHat: augmenting source code with runtime
performance traces in the IDE. In Proceedings of the 40th International Conference
on Software Engineering: Companion Proceeedings, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018. 41–44. https://doi.org/10.1145/3183440.3183481

[7] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen, and Rainer
Koschke. 2009. A Systematic Survey of Program Comprehension through
Dynamic Analysis. IEEE Trans. Software Eng. 35, 5 (2009), 684–702. https:
//doi.org/10.1109/TSE.2009.28

[8] Hyunsook Do, Sebastian G. Elbaum, and Gregg Rothermel. 2005. Supporting
Controlled Experimentation with Testing Techniques: An Infrastructure and its
Potential Impact. Empirical Software Engineering 10, 4 (2005), 405–435. https:
//doi.org/10.1007/s10664-005-3861-2

[9] Sebastian Hahn, Matthias Trapp, Nikolai Wuttke, and Jürgen Döllner. 2015.
Thread City: Combined Visualization of Structure and Activity for the Explo-
ration of Multi-threaded Software Systems. In 19th International Conference on
Information Visualisation, IV 2015, Barcelona, Spain, July 22-24, 2015. 101–106.
https://doi.org/10.1109/iV.2015.28

[10] JetBrains s.r.o. 2021. All Developer Tools and Products by JetBrains. https:
//www.jetbrains.com/products.html#type=ide

[11] Benjamin Karran, Jonas Trümper, and Jürgen Döllner. 2013. SYNCTRACE: Visual
thread-interplay analysis. In 2013 First IEEE Working Conference on Software
Visualization (VISSOFT), Eindhoven, The Netherlands, September 27-28, 2013. 1–10.
https://doi.org/10.1109/VISSOFT.2013.6650534

[12] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learning from
mistakes: a comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2008, Seattle, WA, USA,
March 1-5, 2008. 329–339. https://doi.org/10.1145/1346281.1346323

[13] Katharina Mehner. 2005. Trace based debugging and visualisation of concurrent
Java programs with UML. Ph.D. Dissertation. University of Paderborn, Germany.
http://ubdata.uni-paderborn.de/ediss/17/2005/mehner/disserta.pdf

[14] Andy Nisbet, Nuno Miguel Nobre, Graham D. Riley, and Mikel Luján. 2019.
Profiling and Tracing Support for Java Applications. In Proceedings of the 2019
ACM/SPEC International Conference on Performance Engineering, ICPE 2019, Mum-
bai, India, April 7-11, 2019. ACM, 119–126. https://doi.org/10.1145/3297663.
3309677

[15] Oliver Moseler, Lucas Kreber, and Stephan Diehl. 2021. Supplementary Material
to ThreadRadar: A Thread-Aware Visualization for Debugging Concurrent Java
Programs. https://doi.org/10.5281/zenodo.4753849

[16] Oracle. 2020. ArrayBlockingQueue (Java SE 11 & JDK 11). https:
//docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/
ArrayBlockingQueue.html

[17] Oracle. 2020. JVM(TM) Tool Interface 11.0.0. https://docs.oracle.com/en/java/
javase/11/docs/specs/jvmti.html

[18] Wim De Pauw, Sophia Krasikov, and John F. Morar. 2006. Execution patterns
for visualizing web services. In Proceedings of the ACM 2006 Symposium on
Software Visualization, Brighton, UK, September 4-5, 2006. ACM, 37–45. https:
//doi.org/10.1145/1148493.1148499

[19] Gustavo Pinto, Weslley Torres, Benito Fernandes, Fernando Castor Filho, and
Roberto Souto Maior de Barros. 2015. A large-scale study on the usage of Java’s
concurrent programming constructs. Journal of Systems and Software 106 (2015),
59–81. https://doi.org/10.1016/j.jss.2015.04.064

[20] David Röthlisberger, Marcel Harry, Walter Binder, Philippe Moret, Danilo Ansa-
loni, Alex Villazón, and Oscar Nierstrasz. 2012. Exploiting Dynamic Information
in IDEs Improves Speed and Correctness of Software Maintenance Tasks. IEEE
Trans. Software Eng. 38, 3 (2012), 579–591. https://doi.org/10.1109/TSE.2011.42

[21] David Röthlisberger, Marcel Harry, Alex Villazón, Danilo Ansaloni, Walter Binder,
Oscar Nierstrasz, and Philippe Moret. 2009. Augmenting static source views in
IDEs with dynamic metrics. In 25th IEEE International Conference on Software
Maintenance (ICSM 2009), September 20-26, 2009, Edmonton, Alberta, Canada. IEEE
Computer Society, 253–262. https://doi.org/10.1109/ICSM.2009.5306302

[22] Matús Sulír, Michaela Bacíková, Sergej Chodarev, and Jaroslav Porubän. 2018.
Visual augmentation of source code editors: A systematic mapping study. J. Vis.
Lang. Comput. 49 (2018), 46–59. https://doi.org/10.1016/j.jvlc.2018.10.001

[23] Herb Sutter and James R. Larus. 2005. Software and the concurrency revolution.
ACM Queue 3, 7 (2005), 54–62. https://doi.org/10.1145/1095408.1095421

[24] Edward R. Tufte. 2006. Beautiful Evidence. Graphics Press, Cheshire, CT. 46–63
pages.

[25] Mattias De Wael, Stefan Marr, and Tom Van Cutsem. 2014. Fork/join parallelism
in the wild: documenting patterns and anti-patterns in Java programs using the
fork/join framework. In 2014 International Conference on Principles and Practices
of Programming on the Java Platform Virtual Machines, Languages and Tools, PPPJ
’14, Cracow, Poland, September 23-26, 2014. 39–50. https://doi.org/10.1145/2647508.
2647511

[26] KiriWagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. 2001. Constrained K-
Means Clustering with Background Knowledge. In Proceedings of the Eighteenth
International Conference on Machine Learning (ICML ’01). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 577–584.

[27] Jan Waller, Christian Wulf, Florian Fittkau, Philipp Dohring, and Wilhelm Has-
selbring. 2013. Synchrovis: 3D visualization of monitoring traces in the city
metaphor for analyzing concurrency. In 2013 First IEEE Working Conference on
Software Visualization (VISSOFT), Eindhoven, The Netherlands, September 27-28,
2013. 1–4. https://doi.org/10.1109/VISSOFT.2013.6650520

https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html
https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html
https://doi.org/10.1145/3064176.3064186
https://doi.org/10.1109/VISSOFT.2019.00012
https://doi.org/10.1109/COMPSAC.2007.236
https://doi.org/10.1109/ICPC.2013.6613834
https://doi.org/10.1109/ICPC.2013.6613834
https://doi.org/10.1145/3183440.3183481
https://doi.org/10.1109/TSE.2009.28
https://doi.org/10.1109/TSE.2009.28
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1007/s10664-005-3861-2
https://doi.org/10.1109/iV.2015.28
https://www.jetbrains.com/products.html#type=ide
https://www.jetbrains.com/products.html#type=ide
https://doi.org/10.1109/VISSOFT.2013.6650534
https://doi.org/10.1145/1346281.1346323
http://ubdata.uni-paderborn.de/ediss/17/2005/mehner/disserta.pdf
https://doi.org/10.1145/3297663.3309677
https://doi.org/10.1145/3297663.3309677
https://doi.org/10.5281/zenodo.4753849
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/concurrent/ArrayBlockingQueue.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jvmti.html
https://docs.oracle.com/en/java/javase/11/docs/specs/jvmti.html
https://doi.org/10.1145/1148493.1148499
https://doi.org/10.1145/1148493.1148499
https://doi.org/10.1016/j.jss.2015.04.064
https://doi.org/10.1109/TSE.2011.42
https://doi.org/10.1109/ICSM.2009.5306302
https://doi.org/10.1016/j.jvlc.2018.10.001
https://doi.org/10.1145/1095408.1095421
https://doi.org/10.1145/2647508.2647511
https://doi.org/10.1145/2647508.2647511
https://doi.org/10.1109/VISSOFT.2013.6650520

	Abstract
	1 Introduction
	2 Approach
	3 In-Situ Thread Visualization
	3.1 Visual requirements
	3.2 The ThreadRadar visualization step by step
	3.3 Considering different Levels of Abstraction

	4 Implementation
	4.1 At a Glance
	4.2 Other Features

	5 Demonstration Study
	5.1 Data Race (Bug 1)
	5.2 Synchronization Granularity Issue (Bug 2)
	5.3 Discussion

	6 First Empirical Results
	7 Limitations
	8 Related Work
	9 Conclusion
	References

