Edge Bundling without Reducing the Source to Target Traceability

Fabian Beck∗ Martin Puppe Patrick Braun Michael Burch† Stephan Diehl‡

University of Trier and VISUS, University of Stuttgart, Germany

Abstract

Bundling edges improves the readability of graph visualizations by grouping similar edges together. We propose and explore an edge bundling approach that is less invasive than existing approaches and preserves the traceability of edges. Bundling is restricted to edges that start or end at the same node. The approach is applicable to directed graphs in an arbitrary node layout.

1 Introduction

Drawing edges in a graph is like travelling. A person, Alice, travelling from X to Y metaphorically represents an edge connecting the nodes X and Y. If another person, Bob, wants to travel in a similar direction—from X’ near X to Y’ near Y—Alice and Bob may travel parts of their way together, for instance, in the same train. This is probably more economical like it is often more economical to bundle edges in a graph to reduce visual clutter. But the problem here is, when Alice, Bob, and a bunch of other people are deboarding the train, we usually cannot retrieve where they were originally coming from—from X, X’, or another location near X? Edge bundling, hence, often obscures the exact starting point of an edge but only provides rough directions. In this paper, we explore a less invasive edge bundling approach that allows retrieving the exact source and target of each edge. Metaphorically speaking, Alice and Bob only share transport if they begin their journey at the same starting point or head towards the same destination.

In general, edge bundling approaches use simplified structures to route the edges of a graph. For instance, Holten [2] uses a global hierarchy to determine how to group the edges into bundles; Cui et al. [1] propose to route the edges along a mesh structure. These approaches have in common that they bundle edges of various sources or targets. As metaphorically reported, the problem of such an approach is that the route of single edges, especially its exact source and target, usually cannot be retrieved. The bundling approach that we will present in the following is more related to drawing flow maps [3].

2 Edge Bundling Technique

The idea of our approach is to only bundle edges that have the same source or the same target. Similar to the flow map approach by Phan et al. [3], we use hierarchies to determine the bundling. We will present two edge bundling variants. While the first variant requires a radial node layout, the second variant can handle arbitrary layouts.

The graph that we use as an example is the dependency structure between the classes of a small software system (JFtp, written in Java, 78 classes). In such a system, the package structure provides a natural hierarchy on the nodes. Figure 1 shows the data set in two layouts resulting from the two variants of the approach. The package structure is visualized as the color of the nodes.

∗e-mail: beckf@uni-trier.de
†e-mail: michael.burch@visus.uni-stuttgart.de
‡e-mail: diehl@uni-trier.de
The basic idea for the second bundling variant is that we define a maximum constraining the angle between two target nodes belonging to a bundle. Hence, the bundle is split at the point where this maximum value is reached. The process starts at the source node with all target nodes assigned to one bundle. At this point, the angle between two arbitrary targets in one bundle is often already above the maximum angle. Consequently, the bundle will be split directly at the source node until the constraint is valid again. In each splitting step, we split the set of targets at the largest angle of two neighboring targets (neighboring from the perspective of the source node). For each of the resulting bundles, we recursively compute the next splitting point:

1. For each pair of targets included in the bundle, compute the two points where the angle between the two targets is equal to the maximum angle. These two points are intersection points of a line from the starting point to the barycenter of the two targets and of a circle through the two targets. The radius of the circle is determined by \(R = \frac{AB}{2 \sin \gamma} \), with \(AB \) being the distance between the targets \(A \) and \(B \), and \(\gamma \) being the maximum angle.

2. The point among these candidates that is closest to the starting point becomes the next split point of the bundle. The bundle is split into two subbundles. Again the largest angle between two neighboring targets determines the partition of the targets.

3. Recursively continue to compute the next split point for each of the subbundles, now with the current split point as the starting point. The recursion stops when a bundle has only a single target.

Like in the radial layout, the split points are finally connected by curves. Color and strength of the lines can still be used to visualize the origin of a bundle and the number of aggregated targets.

3 Discussion

In contrast to the hierarchy-based flow map layout of Phan et al. [3], our work focuses on displaying relational information for many nodes instead of visualizing the flow relation of a single source or a small set of sources. The two algorithms that we proposed seem to be simpler to implement. New aspects of our work are the concurrent bundling of outgoing and incoming edges and the geometry-based bundling algorithm in arbitrary layouts.

Comparing the introduced bundling approach to other bundling approaches, we observe that the effect of reducing visual clutter is less. But though bundled, source and target of a particular edge can still be retrieved, which seems to be harder in other bundling approaches. These observations are, however, not empirically tested. A thorough evaluation will be a major part of our future work.

4 Conclusion

We introduced an edge bundling approach that focuses on the traceability of edges. We see its main advantage in its reduced invasiveness: Source and target are not obscured while reducing the visual complexity of the diagram.

References

